	На	ıll Ticket Number :														
	Co	de: 7G121]			J	R-1	7	
	CO	I B.Tech. II Se	mes	ter:	au2	pler	nen	tary	Exa	ımin	atio	ns N	lov/D	ec 2020		
						•		-	ture				•			
				(Cor	nmc	n to	all I	oran	che	s)				_	
	Mc	nx. Marks: 70 Answer all five un	its by	chc	osin	g on		estic		m ed	ach u	unit (5 x 14		3 Hours <s)<="" td=""><td></td></s>	
4	-\	What is a pointer?	Evaloi	in in	dotoi		NIT-		orith	m atia	_					71.4
1.	a) b)	What is a pointer? I Write a program to	•				•					ore				7M 7M
	D)	white a program to	icau a	anu	uispid	ay ai	•	R	iilo u	sii ig į	ponite	513				<i>1</i> IVI
2.	a)	What is the use of o	comm	and	line a	argun										4M
	b)	Explain in detail ab	out dy	/nam	ic m	emor	y allo	catic	n fun	ction	s in C	Э.				10M
							NIT-I									
3.	a)	Define Structures. accessed	Expl	ain v	with	an e	exam	ple ł	ow s	struc	ture i	mem	bers a	are initializ	ed and	8M
	b)	Explain different mo	odes t	o op	en a	file	_	_								6M
	,	Muita a C Dua sua	4	-4 4l	:. · -		_	R	. : اماد ماد			_ :	Dh.h.l.a	. 0		
4.	a)	Write a C Program Write a C program			•		•			•		•	Bubble	e Sort.		7M
	b)	white a C program	io iiiic	ıııe	give	ii eie	шеш	uSIII	y iii le	ai Se	aiciii	ng.				7M
						UI	NIT-I	II								
5.		What is a stack? Ho	ow it c	an b	e rep		ented		c" usii	ng ar	rays?	•				14M
6.		Write a C Program	to per	rform	the	follov	ving (opera	ations	on a	a que	ue				
		i) Insert ii)	Delete	е												14M
							NIT-I									
7.		What is a Singly Li examples.	nked	List.'	? Exp	olain	diffe	ent o	pera	tions	of a	singl	y linke	ed list with s	suitable	14M
		елапіріез.					0	R								I T IVI
8.		Write C functions to	perfo	orm t	he fo	llowi			ions:							
		i. Create a circular	singly	linke	ed lis	t	•									
		ii. Display Circular s	singly	linke	ed list	t										14M
_		D. (1		_			VIT_V				,					
9.		Define binary searce tree.	ch tree	e. Ex	plain	with	exa	mple	delet	ion c	ot an	elem	ent fro	m a binary	search	14M
							0	R								
10.		Define Graph and o	descril	be va	ariou	s rep		ntatio **	ns of	a gr	aph w	vith s	uitable	examples.		14M

Hall Ticket Number :							
Code: 7G321						R-17	

I B.Tech. II Semester Supplementary Examinations Nov/Dec 2020

Electronic Devices and Circuits

(Common to EEE & ECE) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) ***** UNIT-I Name the different types of biasing circuits and give three circuit configurations. 7M List the three sources of instability of collector current and hence define the three stability factors. 7M OR Explain thermal instability. What are the factors affecting the stability factor? 6M 2. What is a load line? Discuss how the load line can be drawn on the I_C versus V_{CE} **8M** characteristics for a bipolar transistor amplifier. UNIT-II Draw the VI characteristics of an N-channel JFET and explain the working of JFET. 8M 3. a) Define Dynamic drain resistance r_d and amplification factor μ for a JFET. 6M b) Draw the two biasing circuits for an enhancement type MOSFET and explain 8M 4. a) How do you set a Q-point in a self-biased JFET? 6M UNIT-III With a neat circuit diagram, explain the working of a transistor amplifier. 8M 5. a) Discuss the merits and limitations of common base amplifier. 6M b) OR Derive the expressions for input resistance, output resistance and voltage gain of an emitter 6. follower circuit. 14M UNIT-IV What are the advantages of FET amplifier over BJT amplifier? 8M 7. The gain of a certain FET amplifier with a source resistance of zero is 25. Determine the value of drain resistance, if the transconductance is 5500µs. 6M OR If properly biased, FET will act as a voltage controlled voltage source, justify. 6M 8. A certain FET has a transconductance of 2500µs. with an external drain resistance of 2k , 8M find the value of ideal voltage gain. UNIT-V a) What are the applications of Tunnel diode? 6M 9. 8M Write a note on LED. OR In what respect is an LED different from an ordinary PN junction diode? State applications of 10. a) 8M 6M b) What is the working principles of schotkey diode?

	Hal	Il Ticket Number :	
	Coc	R-17	
		I B.Tech. II Semester Supplementary Examinations Nov/Dec 2020	
		Engineering Chemistry	
		(Common to EEE & ECE)	
	Max	X. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) ***********************************	
		UNIT-I	
1.	a)	What are boiler troubles? How are they caused? Give suggestions to minimize the troubles.	7M
	b)	What is the principle of EDTA titration? Briefly describe the estimation of hardness of water by EDTA method.	7M
2.	a)	OR What is break point chlorination? State its significance.	7M
۷.	b)	Write brief account on Priming and foaming.	7 M
	D)	UNIT-II	/ IVI
3.	a)	What is meant by molar Conductance and Equivalent conductance? Write their Units?	7M
	b)	Explain the composition, working and applications of Ni-Cd cell	7M
	,	OR	
4.	a)	Write a note on the mechanism of hydrogen evolution type of wet corrosion.	7M
	b)	Explain rusting of iron with the help of electrochemical theory of corrosion	7M
		UNIT-III	
5.		Write a note on	
		(a) Degree of polymerization.	
		(b) Functionality.(c) Tacticity of polymer	14M
		OR	1-111
6.	a)	Write the characteristics of co-polymerization	7M
	b)	Write a note on polydispersive index	7M
	,	UNIT-IV	
7.	a)	Write a note on synthesis of petrol by Fischer Tropsch's method.	7M
	b)	What are the characteristics of a good fuel?	7M
		OR	
8.		What is the main raw material for the metallurgical coke? Describe the Otto Hoffmann's method of manufacture of metallurgical coke. How do you recover the byproducts in this method?	14M
		UNIT-V	
9.	a)	What is the significance of flash & fire point, cloud & pour point of a good lubricant?	7M
	b)	Write functions of lubricants	7M
10.		OR Describe the manufacture of Portland cement by wet method with a neat labelled	
10.		diagram of rotary kiln.	14M

11-	JI Tielset Niverk en .	
	all Ticket Number : R-17	
Co	I B.Tech. II Semester Supplementary Examinations Nov/Dec 2020 Engineering Mathematics-II	l
Мс	(Common to all Branches) Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ***********************************	
,	UNIT-I	
a)	Trace the curve $r = a(1 - \cos_{\pi})$.	7M
b)	Evaluate the integral by changing the order of integration $\int_0^\infty \int_{x^2} xy dx dy$.	7M
	OR $^{\infty}$	
a)	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates.	7M
b)	Evaluate $\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-x-y} x + y + z dx dy dz$	7M
- \	UNIT-II	
a)	Find the Laplace Transform of sin2t sin3t $\cos at - \cos bt$	7M
b)	Find the Laplace Transform of $\frac{\cos at - \cos bt}{t}$	7M
	OR	
a)	Evaluate $\int_{0}^{\infty} e^{-2t} \sin^3 t dt$	7M
b)	Find the Laplace Transform of the periodic function defined by the triangular wave	7 101
	$f(t) = \begin{cases} t & ; 0 \le t \le 1 \\ 2 - t & ; 1 \le t \le 2 \end{cases} \text{ and } f(t+2) = f(t)$	7M
	UNIT-III	<i>7</i> IVI
a)	Find the inverse transform of $\frac{s+2}{s^2-4s+13}$.	7M
b)	Find the inverse transform of $\frac{s^2 - 3s + 4}{s^3}$.	7M
	OR	
	Solve the differential equation $y'' + y = t$, $y(0) = 1$, $y'(0) = 2$ Using Laplace Transform UNIT-IV	14M
a)	Find the angle between the surface $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$	7M
b)	Evaluate $\operatorname{curl} \operatorname{of} \overline{V} = e^{xyz} \left(\overline{i} + \overline{j} + \overline{k} \right)$ at the point $(1,2,3)$.	7M
	OR	
	Find $\operatorname{div} \overline{F}$ and $\operatorname{curl} \overline{F}$ where $\overline{F} = \operatorname{grad} \left(x^3 + y^3 + z^3 - 3xyz \right)$	14M
	UNIT-V Evaluate by Green's theorem $\int \left[\left(x^2 - \cos hy \right) dx + \left(y + \sin x \right) dy \right]$, where 'c' is the rectangle	
	with vertices $(0,0)$, $(f,0)$, $(f,1)$, $(0,1)$.	,
	OR	14M
	Verify stoke's theorem for a vector field $\overline{F} = v^3 \overline{i} - x^3 \overline{j}$ in the region $x^2 + v^2 \le 1$, $z = 0$.	14M

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

На	Il Ticket Number :	
Cod	de: 7G523	
	I B.Tech. II Semester Supplementary Examinations Nov/Dec 2020	
	Geometrical Drawing	
Ма	(Common to EEE & ECE) x. Marks: 70 Time: 3 Hours	
	Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) *********	
	UNIT-I	
a)	Divide a given line of 75mm long in to TEN equal parts	7M
b)	Construct a regular Pentagon of given side 35mm.	7M
	OR Construct a gualaid having a rolling girals diameter as 50mm. Also draw a normal and a	
	Construct a cycloid having a rolling circle diameter as 50mm. Also draw a normal and a tangent to a curve at a point 35mm above the base line.	14M
	UNIT-II	
a)	A point A is 25mm above the H.P & 35mm in front of the V.P and 30mm in front of P.P. Draw	01.4
,	its (i) front view (ii) Top view (iii) Left side view.	8M
b)	A line AB of 50mm long is parallel to both H.P and V.P. The line is 40mm above H.P and	6M
	30mm in front of V.P. Draw the projections of the line. OR	
2)	A line AB, 55mm long has its end A is 15mm above H.P and 20mm in front of the V.P. The	
a)	line is inclined at 45° to the H.P. Draw the projections.	7M
b)	A line CD, 60mm long has its end C is 10mm above H.P and 15mm in front of the V.P. The line is inclined at 30° to the V.P. Draw the projections.	7M
	UNIT-III	
	A Regular pentagonal plane of 30mm side is parallel to H.P and perpendicular to V.P. The	
	plane is 15 mm above the H.P and an edge of it lies on V.P. Draw the projections of the	4 45 4
	plane OR	14M
	A Regular hexagonal plane of 25mm side is parallel to V.P and perpendicular to H.P. The	
	plane is 25 mm in front of V.P and an edge of it lies on H.P. Draw the projections of the	
	plane	14M
	UNIT-IV	
	Draw the projections of a cylinder of base 30mm diameter and axis 50mm long, when it is resting on HP on its base.	1 4 5 4
	OR	14M
	Draw the projections of a pentagonal prism, base 25mm side and axis 50mm long, resting on	
	one of its rectangular faces on the HP, with the axis inclined at 45° to the VP.	14M
	UNIT-V	
	Draw the isometric projection of a circle of diameter 50mm with its plane horizontal and	
	vertical OR	14M
	Draw the isometric projection of a cylinder of base diameter 30mm and axis 70mm long.	14M

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.