	Hal	l Ticket Number :											
	Cod	le: 7GC24	1	<u> </u>	, ,	"			,			R-17	
		I B.Tech. II S	Eng	gine	ering	mento Mat l to All	hem	atic	s-II	ons J	une	2024	
	_	ıx. Marks: 70 wer any five full qu			oosing		Juestic			ach ur	nit (5	Time: 3 Hours x14 = 70 Marks)	
						UNIT-							
1.	a)	Change of order o	f integrati	ion an	id eval	luate $\int\limits_0^\infty$	$\int_{x}^{\infty} \frac{e^{-y}}{y}$	dx dz	V				7M
	b)	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)}$	$\int dx dy$ by	chan	ging to	polar	coord	inate	es.				7M
2	۵)	Trace the course	/1	`		OR							
2.	•	Trace the curve r	•	ŕ									7M
	b)	Evaluate $\iint_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-x-y} dx$	x + y + z dz	x dy dz	;	UNIT-	.II						7M
		∞ •				Olviii	11						
3.	a)	Evaluate $\int_{0}^{\infty} t e^{-2t} C$	cos <i>tdt</i>										7M
	b)	Find the Laplace T	ransform		$\int_{0}^{t} \int_{0}^{t} Co$	s a u di	u du d	lu					7M
				a.		OR							
4.	a)	Find the Laplace 1	ransform	of $\frac{S_1}{S_2}$	$\frac{\ln 3t C}{t}$	los t							7M
	b)	Find the Laplace T	ransform	of te		<i>t</i> UNIT-	III						7M
5.	a)	Find the inverse tr	ansform (of ${s(s)}$	$\frac{1}{a^2 + a^2}$	_·)							7M
	b)	Find the inverse tr	ansform (of $\frac{1}{s^2}$	$\frac{s+2}{-4s+}$.							7M
						OR							
6.		Find the inverse tr	ansform (of log	` _		11/						14M
7.		Find the direction	nal deriv	ative		$\frac{\mathbf{UNIT} - \mathbf{I}}{(x, y, z)}$		² + 1	z^3 at	the n	oint	(2,-1,1) in the	
ι.		direction of the vec				(2, 9, 2	, ay	' y	., ui	о р	J., IC	(2, 1,1)	7M
			•	•		OR							, 141

5.

6.

7.

Code: 7GC24

8. a) Prove that $\operatorname{div}\operatorname{curl} \overline{F} = 0$

7M

b) Show that $\nabla^2 \left(\frac{1}{r} \right) = 0$

7M

UNIT-V

Verify Green's Theorem for $\int \left[\left(3x - 8y^2 \right) dx + \left(4y - 6xy \right) dy \right]$ where 'c' is bounded by 9. region bounded by x = 0, y = 0 and x + y = 1

14M

OR

Verify stoke's theorem for a vector field $\overline{F} = (x^2 + y^2)\overline{i} - 2xy\overline{j}$ taken round the 10. rectangle bounded by the lines $x = \pm a$, y = 0, y = b. 14M

Hall Ticket Number :						Ī

Code: 7GC23

R-17

I B.Tech. II Semester Supplementary Examinations June 2024

		Engineering Physics					
		(Common to CE, ME and CSE)	0.11				
		rks: 70 ny five full questions by choosing one question from each unit (5x14 = 70	3 Hours				
/\(\)1344	Ci Gi	********	J Marks J				
		UNIT-I					
1.	a)	Differentiate Step-Index and Graded-Index optical fibers	9M				
	b)	Distinguish Interference and Diffraction of light	5M				
		OR					
2.	a)	Describe Newton's rings experiment for diameter of ring	9M				
	b) What is LASER and write characteristics of laser						
		UNIT-II					
3.	a)	Describe the production of ultrasonics by Inverse Peizo electric effect	8M				
	b)	Estimate the packing fractions of SC and BCC	6M				
		OR					
4.	a)	What is space lattice and draw Bravias lattices	10M				
	b)	Formulate applications of Ultrasonics	4M				
5.		Analyze motion of electron in periodic potential of metal	4.484				
5.		OR	14M				
6.	a)	How the solids are classified on the basis of energy band theory	7M				
O.	b)	Describe Fermi-Dirac distribution function	7 W				
	υ,		7 101				
		UNIT-IV					
7.	a)	Derive Hall voltage and justify its importance	6M				
	b)	Brief BCS theory and Flux quantization	M8				
		OR					
8.	a)	Brief Joshepson's effect with types	6M				
	b)	Explain the diamagnetic nature of superconductors by Meissner's effect	8M				
		UNIT-V					
9.	a)	classify the ferromagnetics by hysteresis property	7M				
	b)	Narrate the importance of nano materials by basic principles	7M				
	,	OR					
10.	a)	What is CNT and explain it	7M				
	b)	Derive magnetic moment of magnetic material through origin	7M				

Hall Ticket Number: R-17 Code: 7G121 I B.Tech. II Semester Supplementary Examinations June 2024 **Data Structures** (Common to All Branches) Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)UNIT-I a) What is a pointer? What are the features of pointers? Write a C program to print 1. address of a variable 8M b) Write a C program to swap two numbers using pointers. 6M OR Compare array and pointers in terms of memory efficiency and execution time 2. efficiency. 14M UNIT-II Define union. List out the differences between unions and structures 3. 7M b) Write a program for sorting given numbers using selection sort technique 7M a) Define Structures. Explain with an example how structure members are initialized and 4. accessed 8M b) Write a C program to find the given element using linear searching. 6M UNIT-III Write a program to implement a linear queue using arrays. Take into account the 5. exceptions like Queue Full and Queue Empty. 14M 6. a) What is Data Structure? Explain in detail about different type of data structures. 7M b) Write applications of stack 7M **UNIT-IV** 7. Write advantages of doubly linked list over singly linked list. Write C function that will insert a given integer value into an ordered doubly linked list. 14M What is a Singly Linked List.? Explain different operations of a singly linked list with 8. suitable examples. 14M UNIT-V Define binary search tree. Explain with example deletion of an element from a binary 9. search tree. 14M Write the recursive algorithms for different binary tree traversal techniques. Find all the 10. tree traversals for the following binary tree:

14M