	Hall Ticket Number :	
	Code: 7G121	7
	I B.Tech. II Semester Supplementary Examinations Nov/Dec 2020 Data Structures (Common to all branches)	
	Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks ********	
	UNIT–I	
1.	,	7M
	 b) Write a program to read and display array elements using pointers OR 	7M
2.		4M
	b) Explain in detail about dynamic memory allocation functions in C.	10M
	UNIT–II	
3.	a) Define Structures. Explain with an example how structure members are initialize accessed	d and 8M
	b) Explain different modes to open a file	6M
	OR	
4.	a) Write a C Program to sort the given array in descending order using Bubble Sort.	7M
	b) Write a C program to find the given element using linear searching.	7M
	UNIT–III	
5.		14M
	OR	
6.		4 4 1 4
	i) Insert ii) Delete	14M
	UNIT-IV	
7.		iitahla
	examples.	14M
	OR	
8.		
	i. Create a circular singly linked list	
	ii. Display Circular singly linked list	14M
	UNIT–V	
9.	Define binary search tree. Explain with example deletion of an element from a binary stree.	search 14M
	OR	
10.	Define Graph and describe various representations of a graph with suitable examples.	14M

	На	III Ticket Number :												[
	Co	de: 7GC24	11										1		R-17	
	I B.Tech. II Semester Supplementary Examinations Nov/Dec 2020															
	Engineering Mathematics-II (Common to all Branches)															
	Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)									Urs						
			,	0.10			****	*****					•	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1.	a)	Trace the curve $r =$	a(1-	- cos ,	").	U	NIT–I									7M
	b)	Evaluate the integra	u by c	han	aina	tha a	rdor (of int	oarat	ion	$\int_{1}^{1} \int_{1}^{2-x} x$	drdy				714
	$0 x^2$									7M						
_		$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} -(x^2 + v^2)$					0									
2.	a)	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx$	dx dy	by c	hang	jing t	o pola	ar co	ordin	ates						7M
	b)	Evaluate $\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-x-y} x$	+ v +	z.dx.	dv dz											7M
			2	Ĩ	<i>,</i> ,											
3.	a)	Find the Laplace Tra	ansfo	rm o	f sin2		NIT-I I 3t									7M
	b)	Find the Laplace Tra	ansfo	rm o	f Co	s <i>at</i> -	-Cos	bt								
						1	0									7M
	,	$ \int_{0}^{\infty} e^{-2t} \mathbf{S} \cdot \mathbf{r}^{2}$	³ 4 d4													
4.	a)	Evaluate $\int_{0}^{\infty} e^{-2t} \sin^2 t$	i ai													7M
	b)	Find the Laplace $\int t \cdot 0 < 0$	Trans 7 <i>t <</i> 1	sforn	n of	the	peric	odic	funct	ion	defin	ed b	y the	triang	jular wav	e
		$f(t) = \begin{cases} t & ; 0 \le \\ 2-t & ; 1 \le \end{cases}$	$t \leq 1$	2 an	nd f	(t+1)	2)=	f(t))							7M
							IIT–II									7 111
5.	a)	Find the inverse trai	nsforr	n of	$\frac{s}{s^2}$	+2	$\frac{1}{13}$.									7M
	b)	Find the inverse trai			2		-									714
	b)	Find the inverse trai	ISION			s ³	 0	P								7M
6.		Solve the differentia	l eau	ation	v"-	+ v =			1. v′((0) =	2 Usi	ina La	aplace	Trans	form	14M
							T_ 		, , (-)						
7.	a)	Find the angle betw	een tl	he sı	urfac	$e x^2$	$+y^{2}$ -	$+z^2 =$	=9ar	nd z	$=x^{2}$ -	$+y^{2}-$	3at th	e poin	t $(2, -1, 2)$) 7M
	b)	Evaluate $curl of \overline{V}$ =	$=e^{xyz}$	$\left(\overline{i} + \right)$	$\overline{j} + \overline{k}$	z)at	the p	oint(1, 2, 3).						7M
		_	_		_		0									
8.		Find $div \overline{F}$ and $curl$	F wł	nere	<i>F</i> =				$z^3 -$	3 x y	(z)					14M
9.		Evaluate by Green's	s the	orem	n ∫[(l IT–V cos <i>h</i> y		+(y-	+ sin	x)dy], wł	nere 'c	' is the	e rectangl	е
		with vertices $(0,0)$,	(f, 0)	,(f,	,1), (0,1).										14M
10							_0		2 -				2 2			
10.		Verify stoke's theore	em fo	rav	ector	field		y³i - **	$-x^{3}j$	in t	he reç	gion <i>x</i>	$x^{2} + y^{2}$	≤1, <i>z</i> =	= 0 .	14M

	Hal	Il Ticket Number :	1
L	Coc	de: 7GC23	
		I B.Tech. II Semester Supplementary Examinations Nov/Dec 2020	-
		Engineering Physics	
		(Common to CE, ME & CSE)	
	Max	x. Marks: 70 Approximate by observing one question from each unit (5 x 14 = 70 Marks)	
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT–I	
1.	a)	Define constructive and destructive interferences	4M
1.	b)	Describe Newton's rings experiment for diameter of ring	10M
	0)	OR	10101
2.	a)	What is LASER and write characteristics of laser	6M
	b)	Recite the ruby laser for production of laser	8M
	,	UNIT-II	
3.	a)	What is Unit cell & describe the Seven Crystal Systems.	10M
	b)	Show Bragg's law as 2d Sin = n	4M
		OR	
4.	a)	What is space lattice and draw Bravias lattices	10M
	b)	Write steps to find Miller indices	4M
		UNIT–III	
5.	a)	State de-Broglie hypothesis of dual nature and derive its wavelength	8M
	b)	Define and explain Heisenberg uncertainty principle	6M
		OR	
6.	a)	Explain postulates of free electron model	6M
	b)	How the solids are classified on the basis of energy band theory	8M
_		UNIT-IV	
7.	a)	Define and explain drift and diffusion currents in semiconductors	10M
	b)	what is LED brief it	4M
0		OR Evaloin Meissner's effect and how superconductors are classified as Type 1.8 Type 2	14M
8.		Explain Meissner's effect and how superconductors are classified as Type-I & Type-2 UNIT-V	1411
9.	a)	Define magnetic materials write any two examples	4M
5.	b)	Write the properties of dia, para and ferro magnetic materials	10M
	5)	OR	10101
10.	a)	What is CNT and explain it	8M
	b)	Write the applications of nano materials	6M

L	C	R-17	
	Coc	IB.Tech. II Semester Supplementary Examinations Nov/Dec 2020	J
		Basic Electrical and Electronics Engineering	
		(Computer Science and Engineering)	
	Max	x. Marks: 70 Time: 3 Hours	5
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
	,	UNIT-I	714
۱.	a)	Define the Ohm's Law and its applications.	7M
	b)	State and explain Kirchoff's laws using neat diagrams. OR	7M
2.	a)	Define the terms	
	ц)	i) Electric Current ii) Potential Difference iii) Electric Power iv) Energy	8M
	b)	Three capacitors of 6 mF, 8 mF and 10 mF are connected in series. Find the	
		equivalent capacitance.	6M
3.	a)	Explain the operation & principle of dc motors and explains the significance of back emf in dc motors.	7M
	b)	A 6 pole, lap wound armature has 840 conductors and flux per pole of 0.018wb.	
	,	Calculate the emf generated when the machine is running at 1500rpm.	7M
		OR	
1 .	a)	Explain the operation of principle of DC generator.	7M
	b)	Derive the expression for Torque in a DC Motor.	7M
5.	a)	Explain Torque-Slip Characteristics of a Three phase induction motor.	7M
	b)	Explain the working principle of three phase alternator.	7M
	2)	OR Describe the tests that can be performed on a single phase transformer in detail.	714
5.	a) b)	Explain the various losses that occur in single phase transformer.	7M 7M
	b)	UNIT-IV	7 111
7 .		Explain the operation of Half wave rectifier with relevant diagrams.	14M
•		OR	1 1101
3.	a)	Explain the working of N-P-N transistor and mention its input-output characteristics.	7M
	b)	Explain the input and output characteristics of transistor in CE configuration.	7M
	,	UNIT-V	
).		Enumerate the applications of dielectric heating and induction heating.	14M
		OR	~
).	a)	Describe how phase and frequency are measured by using CRO.	7M
	b)	List the applications of CRO.	7M
