Hall Ticket Number : R-19 Code: 19A3217 IB.Tech. II Semester Supplementary Examinations February 2022 Engineering Graphics-II (Common to CE & ME) Time: 3 Hours Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) Marks UNIT-I 1. A square prism, base 40 mm side, axis 80 mm long, has its base on the HP and its faces equally inclined to the VP. It is cut by a plane perpendicular to the VP, inclined at 60° to the HP and passing through a point on the axis 55 mm above the HP. Draw its front view, sectional top view 14M CO1 L4 OR 2. A cylinder of 40mm diameter, 60mm height and having its axis vertical, is cut by a section plane, perpendicular to the V.P., inclined at 45° to the H.P., and intersecting the axis 32mm above the base. Draw its front view, sectional top view and true shape of the section. 14M CO1 L4 UNIT-II 3. a) A square prism of side of base 40mm and axis 80mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism. 07M CO2 L3 b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. 07M CO2 L3 6 A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel										
 18.Tech. II Semester Supplementary Examinations February 2022 Engineering Graphics-II			R-	19]					
Engineering Graphics-II (Common to CE & ME) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) Imme: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) Imme: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) Imme: 3 Hours I unit Imm			v 2022		_					
Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) Marks: co UNIT-I Image: Co Image: Co Ploams UNIT-I Marks: co Image: Co Ploams Image:			,							
Answer any five full questions by choosing one question from each unit (5x14=70 Marks) ******** Marks co Buowner			Timora							
 UNIT-I A square prism, base 40 mm side, axis 80 mm long, has its base on the HP and its faces equally inclined to the VP. It is cut by a plane perpendicular to the VP, inclined at 60° to the HP and passing through a point on the axis 55 mm above the HP. Draw its front view, sectional top view A cylinder of 40mm diameter, 60mm height and having its axis vertical, is cut by a section plane, perpendicular to the V.P., inclined at 45° to the H.P., and intersecting the axis 32mm above the base. Draw its front view, sectional top view and true shape of the section. a) A square prism of side of base 40mm and axis 80mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism. b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained soit. M CO2 L3 A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 	Answer any five full questions by choosing one question from each unit $(5x14 = 70 \text{ Marks})$									
 UNIT-I A square prism, base 40 mm side, axis 80 mm long, has its base on the HP and its faces equally inclined to the VP. It is cut by a plane perpendicular to the VP, inclined at 60° to the HP and passing through a point on the axis 55 mm above the HP. Draw its front view, sectional top view A cylinder of 40mm diameter, 60mm height and having its axis vertical, is cut by a section plane, perpendicular to the V.P., inclined at 45° to the H.P., and intersecting the axis 32mm above the base. Draw its front view, sectional top view and true shape of the section. A square prism of side of base 40mm and axis 80mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism. Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. INIT-II A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 			Marks	со						
 its base on the HP and its faces equally inclined to the VP. It is cut by a plane perpendicular to the VP, inclined at 60° to the HP and passing through a point on the axis 55 mm above the HP. Draw its front view, sectional top view A cylinder of 40mm diameter, 60mm height and having its axis vertical, is cut by a section plane, perpendicular to the V.P., inclined at 45° to the H.P., and intersecting the axis 32mm above the base. Draw its front view, sectional top view and true shape of the section. UNIT-II 3. a) A square prism of side of base 40mm and axis 80mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism. b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. UNIT-II A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis howing the lines of intersection. 14M CO2 L3 		UNIT–I			2010.					
It is cut by a plane perpendicular to the VP, inclined at 60° to the HP and passing through a point on the axis 55 mm above the HP. Draw its front view, sectional top view OR 2. A cylinder of 40mm diameter, 60mm height and having its axis vertical, is cut by a section plane, perpendicular to the V.P., inclined at 45° to the H.P., and intersecting the axis 32mm above the base. Draw its front view, sectional top view and true shape of the section. UNIT-II 3. a) A square prism of side of base 40mm and axis 80mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism. 07M CO2 L3 b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. 4. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. 14M CO2 L3 14M CO2 L3 14M CO2 L3 14M CO2 L3	1.									
to the HP and passing through a point on the axis 55 mm above the HP. Draw its front view, sectional top view OR 2. A cylinder of 40mm diameter, 60mm height and having its axis vertical, is cut by a section plane, perpendicular to the V.P., inclined at 45° to the H.P., and intersecting the axis 32mm above the base. Draw its front view, sectional top view and true shape of the section. UNIT-II 3. a) A square prism of side of base 40mm and axis 80mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism. 07M CO2 L3 b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. OR 4. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. UNIT-III 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 14M CO3 L4										
 above the HP. Draw its front view, sectional top view OR A cylinder of 40mm diameter, 60mm height and having its axis vertical, is cut by a section plane, perpendicular to the V.P., inclined at 45° to the H.P., and intersecting the axis 32mm above the base. Draw its front view, sectional top view and true shape of the section. UNIT-II a) A square prism of side of base 40mm and axis 80mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism. b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. OR A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. UNIT-III A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 										
 A cylinder of 40mm diameter, 60mm height and having its axis vertical, is cut by a section plane, perpendicular to the V.P., inclined at 45° to the H.P., and intersecting the axis 32mm above the base. Draw its front view, sectional top view and true shape of the section. UNIT-II a) A square prism of side of base 40mm and axis 80mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism. b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. OR A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. UNIT-II A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis howing the lines of intersection. 14M CO3 L4 			14M	CO1	L4					
 axis vertical, is cut by a section plane, perpendicular to the V.P., inclined at 45° to the H.P., and intersecting the axis 32mm above the base. Draw its front view, sectional top view and true shape of the section. UNIT-II 3. a) A square prism of side of base 40mm and axis 80mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism. b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. OR 4. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. UNIT-III 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis howing the lines of intersection. 14M CO2 L3 		OR								
 V.P., inclined at 45° to the H.P., and intersecting the axis 32mm above the base. Draw its front view, sectional top view and true shape of the section. UNIT-II 3. a) A square prism of side of base 40mm and axis 80mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism. b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. OR 4. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. UNIT-III 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis thom long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 	2.									
 32mm above the base. Draw its front view, sectional top view and true shape of the section. UNIT-II 3. a) A square prism of side of base 40mm and axis 80mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism. b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. OR 4. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. UNIT-III 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 										
 view and true shape of the section. UNIT-II 3. a) A square prism of side of base 40mm and axis 80mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism. b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. 4. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 										
 3. a) A square prism of side of base 40mm and axis 80mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism. b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. 4. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 		•	14M	CO1	L4					
 long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism. b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. 4. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 		UNIT–II								
 face of it is parallel to VP. Draw the development of the prism. b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. OR A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. UNIT-III A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis howing the lines of intersection. 14M CO3 L4 	3. :									
 prism. b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. 4. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 										
 b) Draw the development of the lateral surface of a square pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. UNIT-III A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 		· · ·	07M	CO2	13					
 pyramid, side of base 25mm and height 50mm, resting with its base on HP and all the sides of the base are equally inclined to VP. OR 4. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. UNIT-III 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids bisect each other at right angle. Draw the projections of the two solids bisect each other at number of intersection. 		•	01111	002	20					
equally inclined to VP.07M CO2L3OR4. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid.14M CO2L3UNIT-III5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection.14M CO3L4		,								
 OR 4. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. IMIT-III 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 										
 4. A cone of base diameter 50mm and axis 60mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 			07M	CO2	L3					
 resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. UNIT-III 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 	Л	_								
 perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20mm from the apex. Draw the development of the retained solid. UNIT-III 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 	4.									
from the apex. Draw the development of the retained solid. 14M CO2 L3 UNIT-III 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 14M CO3 L4										
solid. UNIT-III 5. A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 14M CO3 L4										
UNIT-III5.A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection.14M CO3L4		•	14M	CO2	13					
 A vertical cylinder of base 90mm and 120mm axis is penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 			1-111	002	LU					
penetrated by a cone of base diameter 90mm and axis 140mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection. 14M CO3 L4	5.									
at right angle. Draw the projections of the two solids showing the lines of intersection. 14M CO3 L4		-								
showing the lines of intersection. 14M CO3 L4		•								
•			14M	CO3	14					
		OR		000	L7					

- Code: 19A321T 6. A cylinder of 60mm diameter and axis 80mm long is standing vertically on its base on HP. It is penetrated by a square prism of 30mm side and 100mm length, the axis of which is parallel to both the reference planes and the faces equally inclined to HP. The axes of the solids intersect at right angles. The height of the axis of the prism above HP is 40mm. Draw the projections of the solids showing the curves of intersection in the front view and also draw its top view and side view. 14M CO3 L4 **UNIT-IV** 7. a) Draw the isometric view of a pentagon of 50mm diameter with its plane horizontal and vertical. 07M CO4 L4 b) Draw the isometric view of a hexagon of 50mm diameter with its plane horizontal and vertical. 07M CO4 L4 OR 8. Draw the isometric view of a cylinder and a cone with base diameter 50mm and axis 65mm long. 14M CO4 L4 UNIT-V 9. Draw the isometric view of the following figure 100 48 36 3 16 16 3 23 14M CO5 L4 OR
- 10. Draw the front view, top view and side view of the solid object given below:

14M CO5 L4

Hall Ticket Number :						[
				ų.		R-19

Code: 19A322T

Max. Marks: 70

I B.Tech. II Semester Supplementary Examinations February 2022

Engineering Mechanics

(Common to CE & ME)

Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

Marks CO Blooms Level

15°

 A sphere of weight 100 N is tied to a smooth wall by a string as shown in Fig. Find the tension T in the string and reaction R of the wall.

14M 1 3

- **B OR** Three forces of magnitude 40 kN, 15 kN and 20 kN are acting at a point Q as shown in Fig. The angles made by 40 kN
- Three forces of magnitude 40 kN, 15 kN and 20 kN are acting at a point O as shown in Fig. The angles made by 40 kN, 15kN and 20 kN forces with X-axis are 60°, 120° and 240° respectively. Determine the magnitude and direction of the resultant force.

UNIT–II

3. Determine the forces in all the members of the truss shown in Fig. and indicate the magnitude and nature of forces on the diagram of the truss. All inclined members are at 60° to horizontal and length of each member is 2 m.

14M 2 3

4. Find the forces in the members *AB*, *AC* and *BC* of the truss shown in Fig

14M 2 3

5. Find the centre of gravity of the I-section shown in Fig.

 State the theorem of perpendicular axis. How will you prove this theorem?
 14M 3 1

UNIT–IV

7. The angle of rotation of a body is given as a function of time $= a + at + bt^2$ where by the equation. o initial angular displacement, a and b are constants. Obtain general expressions for : (a) the angular velocity and (b) the angular acceleration of the body. If the initial angular velocity be 3f radian per second and after two seconds the angular velocity is 8f radian per second, determine the constants a and b. 14M 4 4 OR A wheel rotating about a fixed axis at 20 r.p.m. is uniformly 8. accelerated for 70 second during which time it makes 50 revolutions. Find (i) angular velocity at the end of this interval, and (ii) time required for speed to reach 100 revolutions per minute. 3 14M 4 UNIT-V 9. A train of weight 2000 kN is pulled by an engine on a level track at a constant speed of 36 kilometre per hour. The resistance due to friction is 10 N per kN of the train's weight. 5 3 Find the power of the engine. 14M OR 10. The driver of a car 2 ton mass moving at 60 kmph apples sudden brakes to bring the car to a stop in 2 seconds. Determine the average braking force. 14M 5 3

	F	Hall Ticket Number :													_
											<u> </u>		R-1	9	
Code: 19AC23T I B.Tech. II Semester Supplementary Examinations February 2022 Engineering Physics (Common to CE & ME)										_					
		Max. Marks: 70 Answer any five full que	estions b	-		ng o			-	om e	each	unit (S	Time: 3 5x14 = 70 N		
													Marks	СО	Blooms Level
	,			I		[_]								004	
1.	a) b)	Describe Focault's pend Define centre of mass a				ovet	om						7M 7M	CO1 CO1	L2 L1
	b)	Define centre of mass a		ann			em						7 101	COT	LI
2.		Explain Newton's laws	in inert	ial ar	-		accel	eratio	on no	on in	ertial	frame	of		
		references												CO1	L2
							_								
•	,														
3.	a)	List the factors affecting				•	and ti	neir r	emed	lies			10M	CO2	L2
	b)	Define reverberation an	a rever	berati	on tir OF								4M	CO2	L1
4	a)	Derive the expression f	or absor	ntion			nt						8M	CO2	L3
	b)	State and explain Sabir		•	0001								6M	CO2	L2
	-,	,													
				l	JNIT	-111									
5.	a)	Define magnetic suscer	otibility a	and m	nome	nt							4M	CO3	L1
	b)	Classify three types of r	nagnetio	c mat			l write	e pro	pertie	es			10M	CO3	L2
	,				OF										
6.	a)	Derive magnetic mome				0	origin	of m	agne	tic m	omer	nt	10M	CO3	L3
	b)	List the applications of I	nagneti	c mai	terial	S							4M	CO3	L2
				l	JNIT	–IV]								
7.	a)	Describe construction c	f optical	I									6M	CO4	L2
	b)	Write the application of	optical f	iber i	n cor	mmui	nicati	on sy	stem	1			8M	CO4	L1
					OF	R									
8.	a)	Differentiate Step-Index	and Gr	aded	-Inde	ex op	tical f	ibers	in pı	opag	gation	Ì	8M	CO4	L2
	b)	Brief the working princip	ole of op	otical	fiber	in pr	opag	ation	of sig	gnal			6M	CO4	L2
				l			٦								
0		What is capacit and list	voriouo	I		–V							GM	COF	14
9.	a) b)	What is sensor and list Write a note on Strain a				ore							6M 8M	CO5 CO5	L1 L1
	5)		na pies	Suic	OF								OW	000	L I
10.	a)	Narrate magnetostrictio	n senso	r wor		-							8M	CO5	L2
	b)	Mention the application			•	rious	fields	5					6M	CO5	L2
	÷						**								

	ŀ	Hall Ticket Number :			,
			R-1	9	
	C	Lode: 19A521T I B.Tech. II Semester Supplementary Examinations Februar	ny 2022		J
		Python Programming	19 2022		
		(Common to CE, ME & CSE)			
	1	Max. Marks: 70	Time: 3	Hours	
	ŀ	Answer any five full questions by choosing one question from each unit (5x	14 = 70 <i>I</i>	Marks)	
		<u> </u>	Maria	00	Blooms
			Marks	CO	Level
4		UNIT-I			
1.	a)	What is computer science? Explain about the Essence of Computationa Problem Solving.	1 7M	CO1	L1
	b)	Write about the process of computational problem solving	7M		L2
	~)	OR			
2.	a)	Write a python program to find weather a given number is odd or even.	7M	CO1	L3
	b)	Illustrate infinite loop with an example	7M	CO1	L2
		UNIT–II			
3.	a)	Summarize in detail about function routine.	14M	CO2	L2
	b)				
		OR			
4.	a)	Compare lists and tuples in Python	7M	CO2	L3
	b)	Describe the typical operations performed on lists	7M	CO2	L3
		UNIT–III			
5.	a)	Explain the use of modular design in software development	7M	CO3	L2
	b)	Explain the process of top-down design	7M	CO3	L2
		OR			
6.	a)	Distinguish different ways of using import statement	7M	CO3	L3
	b)	Differentiate between a text file and a binary file	7M	CO3	L3
7	-)	UNIT-IV	714	004	
7.	,	Explain the concept of an object	7M	CO4	L2
	b)	Describe the use of object references	7M	CO4	L2
8.	a)	OR Justify the need of automatic garbage collection in python	7M	CO4	L5
0.	a) b)	Summarize the concept of memory allocation and deallocation.	71vi 7M		L5 L5
	D)		7 101	004	LO
9.	a)	Define data structures and list out various types of data structures	7M	CO5	L2
0.	b)	Discuss about the common operations performed on data structures	7M		L2
	-)	OR			
10.		Examine abstract data type with its types along with the syntax used	14M	CO5	L3
		***		•	

H	Hall Ticket Number :			1
C	ode: 19AC21T	R-1	9	
	I B.Tech. II Semester Supplementary Examinations Februar Differential Equations and Vector Calculus (Common to All Branches) Max. Marks: 70	y 2022 Time: 3	Hours	
	Answer any five full questions by choosing one question from each unit (5x			
		Marks	со	Blooms Level
4 ->	UNIT-I			
	Solve $(D^2 + 6D + 9)y = e^{-3x}$	7M	CO1	L3
D)	Solve $(D^2 - 1)y = 3x$	7M	CO1	L3
	OR			
2.	Solve $\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x$	14M	CO1	L3
	UNIT–II			
3.	Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$.	14M	CO2	L3
	OR			
4.	Solve the simultaneous equations $\frac{dx}{dt} + 2y + \sin t = 0, \frac{dy}{dt} - 2x - \cos t = 0$			
	given that $x = 0$ and $y = 0$ when $t = 0$.	14M	CO2	L3
5. a)	UNIT–III Form the partial differential equation by eliminating arbitrary constants a	1		
0. aj	and b from $(x-a)^2 + (y-b)^2 = z^2 \cot^2 \Gamma$		CO3	L3
b)	Form the partial differential equation by eliminating arbitrary function from)		
	$z = f(x^2 + y^2)$	7M	CO3	L3
	OR Calua ()			
6. a) b)	Solve $x(y-z)p + y(z-x)q = z(x-y)$ Solve $p \tan x + q \tan y = \tan z$		CO3	L3
6)	UNIT-IV	7 M	CO3	L3
7. a)	Find $div \bar{f}$ where $\bar{f} = grad(x^3 + y^3 + z^3 - 3xyz)$	7M	CO4	L2
b)	If $\overline{f} = (x+3y)\overline{i} + (y-2z)\overline{j} + (x+pz)\overline{k}$ is solenoidal, then find p.		CO4	L2
	OR			
8.	Prove that $r^n \overline{r}$ is solenoidal if $n = -3$.	14M	CO4	L2
_				
9.	Verify Green's theorem in the plane for $\oint (3x^2 - 8y^2)dx + (4y - 6xy)dy$			
	where C is the region bounded by $y = \sqrt{x}$ and $y = x^2$ OR	14M	CO5	L3
10.	Verify stokes theorem for the function $\overline{F} = x^2 \overline{i} + xy \overline{j}$ integrated around the square in the plane z=0 whose sides are along the lines x=0,y=0,x=a,y=a.		CO5	L3