| B.Tech. || Semester Supplementary Examinations February 2022

Engineering Graphics-II

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. A square prism, base 40 mm side, axis 80 mm long, has its base on the HP and its faces equally inclined to the VP. It is cut by a plane perpendicular to the VP, inclined at 60° to the HP and passing through a point on the axis 55 mm above the HP. Draw its front view, sectional top view

OR

2. A cylinder of 40 mm diameter, 60 mm height and having its axis vertical, is cut by a section plane, perpendicular to the V.P., inclined at 45° to the H.P., and intersecting the axis 32 mm above the base. Draw its front view, sectional top view and true shape of the section.

UNIT-II

3. a) A square prism of side of base 40 mm and axis 80 mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism.
b) Draw the development of the lateral surface of a square pyramid, side of base 25 mm and height 50 mm , resting with its base on HP and all the sides of the base are equally inclined to VP.

OR

4. A cone of base diameter 50 mm and axis 60 mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP and parallel to and extreme generator passing through a point on the axis at a distance of 20 mm from the apex. Draw the development of the retained solid.

UNIT-III

5. A vertical cylinder of base 90 mm and 120 mm axis is penetrated by a cone of base diameter 90 mm and axis 140 mm long. The axes of the two solids bisect each other at right angle. Draw the projections of the two solids showing the lines of intersection.
6. A cylinder of 60 mm diameter and axis 80 mm long is standing vertically on its base on HP. It is penetrated by a square prism of 30 mm side and 100 mm length, the axis of which is parallel to both the reference planes and the faces equally inclined to HP. The axes of the solids intersect at right angles. The height of the axis of the prism above HP is 40 mm . Draw the projections of the solids showing the curves of intersection in the front view and also draw its top view and side view.

14M CO3

UNIT-IV

7. a) Draw the isometric view of a pentagon of 50 mm diameter with its plane horizontal and vertical.
b) Draw the isometric view of a hexagon of 50 mm diameter with its plane horizontal and vertical.

07M CO4

OR

8. Draw the isometric view of a cylinder and a cone with base diameter 50 mm and axis 65 mm long.

14M CO4

UNIT-V

9. Draw the isometric view of the following figure

OR

10. Draw the front view, top view and side view of the solid object given below:

14M CO5

Code: 19A322T

\square
| B.Tech. || Semester Supplementary Examinations February 2022

Engineering Mechanics

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT-I

1. A sphere of weight 100 N is tied to a smooth wall by a string as shown in Fig. Find the tension T in the string and reaction R of the wall.

OR
$14 \mathrm{M} \quad 1$
2. Three forces of magnitude $40 \mathrm{kN}, 15 \mathrm{kN}$ and 20 kN are acting at a point O as shown in Fig. The angles made by 40 kN , 15 kN and 20 kN forces with X-axis are $60^{\circ}, 120^{\circ}$ and 240° respectively. Determine the magnitude and direction of the resultant force.

$14 \mathrm{M} \quad 1$

UNIT-II

3. Determine the forces in all the members of the truss shown in Fig. and indicate the magnitude and nature of forces on the diagram of the truss. All inclined members are at 60° to horizontal and length of each member is 2 m .

14M 2
4. Find the forces in the members $A B, A C$ and $B C$ of the truss shown in Fig

14M 2

UNIT-III

5. Find the centre of gravity of the I-section shown in Fig.

OR
6. State the theorem of perpendicular axis. How will you prove this theorem?

UNIT-IV

7. The angle of rotation of a body is given as a function of time by the equation, $\theta=\theta_{\mathrm{o}}+\mathrm{at}+\mathrm{bt}^{2}$ where θ_{o} initial angular displacement, a and b are constants. Obtain general expressions for: (a) the angular velocity and (b) the angular acceleration of the body. If the initial angular velocity be 3π radian per second and after two seconds the angular velocity is 8π radian per second, determine the constants a and b .

OR

8. A wheel rotating about a fixed axis at 20 r.p.m. is uniformly accelerated for 70 second during which time it makes 50 revolutions. Find
(i) angular velocity at the end of this interval, and
(ii) time required for speed to reach 100 revolutions per minute.

14M 4

UNIT-V

9. A train of weight 2000 kN is pulled by an engine on a level track at a constant speed of 36 kilometre per hour. The resistance due to friction is 10 N per kN of the train's weight. Find the power of the engine.

14M 5
3

OR

10. The driver of a car 2 ton mass moving at 60 kmph apples sudden brakes to bring the car to a stop in 2 seconds. Determine the average braking force.

14M 5
3

Code: 19AC23T

| B.Tech. || Semester Supplementary Examinations February 2022

Engineering Physics

(Common to CE \& ME)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
\qquad

UNIT-I

1. a) Describe Focault's pendulum in detail

7M CO1
b) Define centre of mass and explain it for a system

7M CO1

OR

2. Explain Newton's laws in inertial and linear acceleration non inertial frame of references

	UNIT-II			
3. a)	List the factors affecting acoustics of building and their remedies	10M	CO 2	L2
b)	Define reverberation and reverberation time	4M	CO 2	L1
	OR			
4. a)	Derive the expression for absorption coefficient	8M	CO 2	L3
b)	State and explain Sabine's formula	6 M	CO 2	L2
	UNIT-III			
5. a)	Define magnetic susceptibility and moment	4M	CO 3	L1
b)	Classify three types of magnetic materials and write properties	10M	CO 3	L2
	OR			
6. a)	Derive magnetic moment of material through origin of magnetic moment	10M	CO 3	L3
b)	List the applications of magnetic materials	4M	CO 3	L2
	UNIT-IV			
7. a)	Describe construction of optical fiber	6M	CO 4	L2
b)	Write the application of optical fiber in communication system	8M	CO 4	L1
	OR			
8. a)	Differentiate Step-Index and Graded-Index optical fibers in propagation	8M	CO 4	L2
b)	Brief the working principle of optical fiber in propagation of signal	6 M	CO 4	L2
	UNIT-V			
9. a)	What is sensor and list various sensors	6M	CO 5	L1
b)	Write a note on Strain and pressure sensors	8M	CO 5	L1
	OR			
10. a)	Narrate magnetostriction sensor working	8M	CO 5	L2
b)	Mention the applications of sensors in various fields	6 M	CO 5	L2

\square
Code: 19A521T
| B.Tech. || Semester Supplementary Examinations February 2022

Python Programming

(Common to CE, ME \& CSE)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Code: 19AC21T

| B.Tech. || Semester Supplementary Examinations February 2022

Differential Equations and Vector Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO

UNIT-I

1. a) Solve $\left(D^{2}+6 D+9\right) y=e^{-3 x}$
b) Solve $\left(D^{2}-1\right) y=3 x$

OR

2. Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=x e^{3 x}+\sin 2 x$

UNIT-II

3. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x$.

OR

4. Solve the simultaneous equations $\frac{d x}{d t}+2 y+\sin t=0, \frac{d y}{d t}-2 x-\cos t=0$ given that $x=0$ and $y=0$ when $t=0$.

14M CO2

UNIT-III

5. a) Form the partial differential equation by eliminating arbitrary constants a and b from $(x-a)^{2}+(y-b)^{2}=z^{2} \cot ^{2} \alpha$
b) Form the partial differential equation by eliminating arbitrary function from $z=f\left(x^{2}+y^{2}\right)$

7 M CO
L3

7M CO3

OR

6. a) Solve $x(y-z) p+y(z-x) q=z(x-y)$
b) Solve $p \tan x+q \tan y=\tan z$
$7 \mathrm{M} \mathrm{CO3}$
7 M CO

UNIT-IV

7. a) Find $\operatorname{div} \bar{f}$ where $\bar{f}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$
b) If $\bar{f}=(x+3 y) \bar{i}+(y-2 z) \bar{j}+(x+p z) \bar{k}$ is solenoidal, then find p.

7M CO4

OR

8. Prove that $r^{n} \bar{r}$ is solenoidal if $n=-3$.

UNIT-V

9. Verify Green's theorem in the plane for $\oint\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the region bounded by $y=\sqrt{x}$ and $y=x^{2}$

14M CO5

OR

10. Verify stokes theorem for the function $\bar{F}=x^{2} \bar{i}+x y \bar{j}$ integrated around the square in the plane $z=0$ whose sides are along the lines $x=0, y=0, x=a, y=a$.
