Code: 19A322T

| B.Tech. || Semester Supplementary Examinations April 2023

Engineering Mechanics

(Common to CE \& ME)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Find the resultant of the force system shown in Fig. acting on a lamina of equilateral triangular shape.

2. a) State and prove Varignon's theorem.
b) Differentiate between:
(i) Concurrent and non-concurrent forces and (ii) Coplanar and non-coplanar forces

14M 13
OR

UNIT-II

3. A truss of span 9 m is loaded as shown in Fig. Find the reactions and forces in the members marked 1, 2 and 3.

OR

4. Determine the forces in all the members of a cantilever truss shown in Fig.

UNIT-III

5. Determine the surface area and volume of a solid generated when a semi-circular area of 3 cm radius is revolved through 360° about axis AA as shown in fig.

OR
6. State the theorem of perpendicular axis. How will you prove this theorem?

UNIT-IV

7. A ball is thrown upwards from the top of a 50 m high building with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. At the same instant, another ball is thrown upwards with an initial velocity of $30 \mathrm{~m} / \mathrm{s}$ from ground. Determine (i) when and where they will meet each other, and (ii) the velocity of each ball at that instant.

OR

8. A particle moves along a straight line so that its displacement is metre from a fixed point is given by, $S=2 \mathrm{t}^{3}+4 \mathrm{t}^{2}-6 \mathrm{t}+8$ Find : (i) velocity at start, (ii) velocity after 5 seconds, (iii) acceleration at start and (iv) acceleration after 5 seconds.

UNIT-V

9. Two blocks shown in Fig. have weights $A=20 \mathrm{~N}$ and $\mathrm{B}=10 \mathrm{~N}$ and co-efficient of friction between the block A and the horizontal plane is $=0.25$. If the system is released from the rest and the block B falls through a vertical distance of 2 m , what is the velocity attained by block B? Neglect the friction in the pulley and the extension of the string.

$14 \mathrm{M} \quad 5 \quad 4$

OR

10. A train of weight 2000 kN is pulled by an engine on a level track at a constant speed of 36 kilometre per hour. The resistance due to friction is 10 N per kN of the train's weight. Find the power of the engine.

Hall Ticket Number :

R-19

Code: 19AC23T

| B.Tech. || Semester Supplementary Examinations April 2023

Engineering Physics

(Common to CE \& ME)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Derive the acceleration of particle in non-inertial frame of reference with constant angular velocity

8M CO1 L3
b) Show that conservative force is not depend on path followed by the particle

6M CO1 L3

OR

$\begin{array}{ll}\text { 2. a) Define torque and angular momentum and how they are related } & 8 \mathrm{M} \\ \text { CO1 L1 } \\ \text { b) State Kepler's laws of gravitation } & 6 \mathrm{M}\end{array}$

	UNIT-II		
3. a)	Narrate the circuit diagram of Piezo-electric method for ultrasonic production	10M	CO2 L2
	Illustrate the method of Acoustic grating	4M	CO 2 L 2
	OR		
4. a)	List the factors affecting acoustics of building and their remedies	10M	CO 2 L 2
	Define reverberation and reverberation time	4M	CO2 L1
	UNIT-III		
5. a)	Deduce orbital magnetic moment in terms of Bhor Magnetron	10M	CO 3 L 3
	Derive Clausius Mosetti relation	4M	CO3 L2
	OR		
6. a)	Define magnetic susceptibility and moment	4M	CO 3 L 1
	Classify three types of magnetic materials and write properties	10M	CO3 L2

UNIT-IV

7. a) Illustrate the procedure for finding Acceptance Angle and Numerical Aperture of Optical fiber
b) Describe attenuation in optical fiber

4M CO4 L2

OR

8. a) What is LASER and write characteristics of laser 6M CO4 L1
b) Recite the semiconductor laser for production of laser

8M CO4 L2

> UNIT-V
9. Summarize any two methods of sensors in industry

14M CO5 L3
OR

10. a) What is sensor and list various sensors	6 M
CO	L 1
b) Write a note on Strain and pressure sensors	8 M
CO	L 1

\square
Hall Ticket Number :

Code: 19A521T

R-19

| B.Tech. || Semester Supplementary Examinations April 2023

Python Programming

(Common to CE, ME and CSE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

Marks CO BL

1. Discuss in detail about the following
a) Input error checking
b) multi-way selection

OR
2. a) List out arithmetic operators in python and illustrate them with examples
b) Describe and illustrate Boolean operators with examples.

UNIT-II

3. Justify the use of list comprehensions in Python.

OR

4. a) Summarize in detail about function routine.

7M CO2 L2
b) Compare lists and tuples in Python $\quad 7 \mathrm{M} \quad \mathrm{CO} 2 \quad \mathrm{~L} 3$

UNIT-III

5. Explain the process of exception handling in detail.

14M CO3 L3
OR
6. a) Explain the use of modular design in software development
$7 \mathrm{M} \mathrm{CO3} \mathrm{~L} 2$
b) Write a python program to write some text into a file.
$7 \mathrm{M} \mathrm{CO3} \mathrm{L2}$

UNIT-IV

7. Determine three fundamental features of object oriented programming $\quad 14 \mathrm{M} \quad \mathrm{CO} 4 \quad \mathrm{~L} 3$

OR

8. a) Justify the need of automatic garbage collection in python

7M CO4 L5
b) Summarize the concept of memory allocation and de allocation.

7 M CO 4 L

UNIT-V

9. Write an algorithm for Single Linked List-traversing and explain it with an example.

OR

10. a) Define data structures and list out various types of data structures 7M CO5 L2
b) Discuss about the common operations performed on data structures $\quad 7 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2$

Hall Ticket Number :

Code: 19AC21T

R-19

| B.Tech. || Semester Supplementary Examinations April 2023

Differential Equations and Vector Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO
BL
UNIT-I

1. a) Solve $\left(D^{2}+5 D+6\right) y=e^{x}$
b) Solve $\left(D^{2}+4\right) y=\cos x$

OR

2. Solve $\frac{d^{2} y}{d x^{2}}+y=e^{-x}+e^{x} \sin x$

UNIT-II

3. Solve $(2 x-1)^{2} \frac{d^{2} y}{d x^{2}}+(2 x-1) \frac{d y}{d x}-2 y=8 x^{2}-2 x+3$

OR

4. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x^{2}$

14M CO2 L3

UNIT-III

5. Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$

14M CO3 L3
OR
6. a) Form the partial differential equations by eliminating arbitrary functions from $z=f(x+a t)+g(x-a t)$
b) Solve $p y z+q z x=x y$

7 M CO3 L3

UNIT-IV

7. a) Find grad f where $f=x^{3}+y^{3}+3 x y z$

7 M CO4 L2
b) Find the directional derivative of $\phi=x^{2}-2 y^{2}+4 z^{2}$ at $(1,1,-1)$ in the direction of $2 \bar{i}+\bar{j}-\bar{k}$.

7M CO4 L2

OR

8. Prove that $r^{n} \bar{r}$ is solenoidal if $n=-3$.

14M CO4 L2

UNIT-V

9. Using Green's theorem evaluate $\oint_{C}\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$, where C is the closed curve of the region bounded by $y=x^{2}$ and $y^{2}=x$.

14M CO5 L3

OR

10. Verify stokes theorem for the function $\bar{F}=x^{2} \bar{i}+x y \bar{j}$ integrated around the square in the plane $\mathrm{z}=0$ whose sides are along the lines $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}$.

Code: 19A321T

R-19

| B.Tech. || Semester Supplementary Examinations April 2023

Engineering Graphics-II

(Common to CE \& ME)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. A Pentagonal pyramid, base 30 mm side and axis 60 mm long, is lying on one of its triangular faces on the HP with the axis parallel to the VP. A vertical section plane, whose HT bisects the top view of the axis and makes an angle of 30° with the reference line cuts the pyramid, removing its top part. Draw the top view, sectional front view, true shape of the section.
2. A cube of 35 mm long edges is resting on the HP on one of its faces with a vertical face inclined at 30° to VP. It is cut by a section plane parallel to VP and 9 mm away from the axis and further away from the VP. Draw its sectional front view and the top view.

UNIT-II

3. A cylinder of base diameter 50 mm and axis length 70 mm is resting on HP on its base. A cylindrical hole of 40 mm diameter is drilled on the surface of the cylinder. The axis of the hole intersects with the axis of the cylinder at right angles and bisects it. Draw the development of the lateral surface of the cylinder.

14M CO2 L3
OR
4. a) Draw the development of lateral surface of a cone of base diameter 48 mm and altitude 50 mm .
b) A Cylinder of 50 mm diameter and axis 75 mm is resting on its base on HP. Draw the development of lateral surface of the cylinder.
$7 \mathrm{M} \mathrm{CO2}$ L3

7M CO2 L3

UNIT-III

5. A vertical cone diameter of base 80 mm and axis 100 mm long is completely penetrated by a cylinder of 40 mm diameter. The axis of the cylinder is parallel to HP and the VP and intersects the axis of the cone at a point 30 mm above the base. Draw the projections of the solids showing curves of intersection.

14M CO3 L4

OR

6. A vertical square prism, base 50 mm side and axis 90 mm is completely penetrated by a horizontal square prism, base 35 mm side and axis 90 mm , so that their axes bisect. The axis of the horizontal prism is parallel to the V.P., while the faces of the two prisms are equally inclined to the V.P. Draw the projections of the solids showing lines of intersection.

14M CO3 L4

UNIT-IV

7. Draw the isometric view of a square with the side of the base 40 mm and length of axis 70 mm , when its axis is vertical and horizontal.

14M CO4 L4
8. A hexagonal pyramid with side of base 30 mm and axis 120 mm long is resting on its base on HP. An edge of the base is parallel to VP. A horizontal section plane passing through a point to n the axis at a distance of 60 mm from the base. Draw the isometric view of the frustum of the pyramid.

UNIT-V

9. Draw the isometric view of the following figure

OR
10. Draw the isometric view of the following figure

