Code: 19A322T

Engineering Mechanics

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Two spheres, each of weight 1000 N and of radius 25 cm rest in a horizontal channel of width 90 cm as shown in Fig. Find the reactions on the points of contact A, B and C.

14M 13

OR

2. State the law of parallelogram of forces and show that the resultant $\mathrm{R}=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}$ when the two forces P and Q are acting at right angles to each other. Find the value of R if the angle between the forces is zero.

UNIT-II

3. A pull of 60 N inclined at 25° to the horizontal plane, is required just to move a body placed on a rough horizontal plane. But the push required to move the body is 75 N . If the push is inclined at 25° to the horizontal, find the weight of the body and co-efficient of friction.

OR

4. a) State the laws of friction.
b) A body of weight 100 Newtons is placed on a rough horizontal plane.

Determine the co-efficient of friction if a horizontal force of 60 Newtons just causes the body to slide over the horizontal plane.

UNIT-III

5. Prove that moment of inertia of a triangular section about the base of the section $=\frac{\mathrm{bh}^{3}}{12}$
where $b=$ Base of triangular section, and
$h=$ Height of triangular section.
14 M 3

OR

6. State and explain theorems of Pappus-Guldinus.

14M 3

UNIT-IV

7. A boy drops a stone from the top of well vertically downwards into it. The splash is heard by him after 6 seconds. Find the well depth by taking sound velocity as $400 \mathrm{~m} / \mathrm{s}$.
$14 \mathrm{M} \quad 4$

OR

8. A car moving at a constant speed of 60 kmph enters a curved path of radius of curvature measuring 100 m . Determine its total acceleration.
$14 \mathrm{M} \quad 4$

UNIT-V

9. Find the acceleration of bodies and tension in the string joining A and B shown in Fig.

14M 5
3

OR

10. A block is pushed with a velocity of $10 \mathrm{~m} / \mathrm{s}$ along a rough horizontal plane, whose coefficient of kinetic friction is 0.25 and that of static friction is 0.3 . Determine the time taken for the block to come to a stop.

Hall Ticket Number :
Code: 19A521T
| B.Tech. I| Semester Supplementary Examinations July/August 2022

Python Programming

(Common to CE, ME \& CSE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Describe and illustrate Boolean operators with examples.
7M CO1
b) Write a program using if statements in Python.
7M CO1

OR

2. Difference between sequential, selection, and iterative control
14M CO1
3. Define set and illustrate set in Python with suitable example | UNIT-II | | |
| :--- | :--- | :--- | :--- | :--- |
| L2 | | |

OR

4. Define dictionary data type in python? Illustrate dictionary with suitable example.
14M CO2
L3

UNIT-III

5. a) Write a python program to write some text into a file.
7M CO3
b) Discuss about string traversal in python
OR
6. a) How to deal with text files in python?
7M CO3
b) Write a python program to read the lines of a file.
$7 \mathrm{M} \quad \mathrm{CO} 3$

UNIT-IV

7. Illustrate encapsulation with suitable example.
14M CO4
OR
8. a) Explain the difference between a reference and dereferenced value
7M CO4
b) Infer about constructors in Python
7M CO4
UNIT-V
9. What is stack? Demonstrate stack operations with the example.
14M CO5

OR

10. Outline the concept of queue implementation using python list.
14M CO5
L4

Code: 19AC21T

| B.Tech. || Semester Supplementary Examinations July/August 2022

Differential Equations and Vector Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

```
*********
```


UNIT-I

1. Solve $\frac{d^{2} y}{d x^{2}}+y=e^{-x}+e^{x} \sin x$

14M CO1

OR

2. Solve $\left(D^{2}+1\right) x=t \cos t$ given $x=0, \frac{d x}{d t}=0$ at $t=0$.

UNIT-II

3. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x^{2}$

OR

4. Solve $(2 x+3)^{2} \frac{d^{2} y}{d x^{2}}-(2 x+3) \frac{d y}{d x}-12 y=6 x$

14M CO2

UNIT-III

5. Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$

OR

6. Using the method of separation of variables, solve
$\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}$
14M CO3

UNIT-IV

7. Evaluate the line integral $\int_{c}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where c is the square formed by the lines $x= \pm 1$ and $y= \pm 1$.

OR
8. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point (2,-1,2)

UNIT-V

9. Verify Gauss divergence theorem for $\bar{F}=x^{2} \bar{i}+y^{2} \bar{j}+z^{2} \bar{k}$, over the cube formed by the planes $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{b}, \mathrm{z}=0, \mathrm{z}=\mathrm{c}$.

OR

10. Verify Green's theorem in the plane for $\oint\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the region bounded by $x=0, y=0$ and $x+y=1$.
