Hall Ticket Number :			
	R-19		
Code: 19AC21T I B.Tech. II Semester Supplementary Examinations December Differential Equations and Vector Calculus (Common to All Branches)			
Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x1 *********	ime: 3 H 4 = 70 Ma		
UNIT-I	Marks	СО	BL
Solve $(D^2 + 3D + 2)y = e^{-x} + x^2 + \cos x$ OR	14M	CO1	L3
Solve $\frac{d^2y}{dx^2} + 4y = \sec 2x$ by using method of variation of parameters.		CO1	L3
An uncharged condenser of capacity C is charged by applying an e.m			
$E\sin\left(\frac{t}{\sqrt{LC}}\right)$, through leads of self-inductance L and negligible resistance) ,		
prove that for any time t , the charge on one the plate is			
$\frac{EC}{2} \left[\sin\left(\frac{t}{\sqrt{LC}}\right) - \frac{t}{\sqrt{LC}} \cos(\frac{t}{\sqrt{LC}}) \right].$ OR	14M	CO2	L3
Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$. UNIT-III	14M	CO2	L3
Solve $(p^2 + q^2)y = qz$ by using Charpits method.	14M	CO3	L3
OR Form the partial differential equation by eliminating arbitrary constants a and b fro	m		
$(x-a)^2 + (y-b)^2 = z^2 \cot^2 \Gamma$ Form the partial differential equation by eliminating arbitrary function fro	14M	CO3	L3
$z = f(x^2 + y^2)$ UNIT-IV	14M	CO3	L3
Find the work done by a force $\overline{F} = (x^2 - y^2 + x)\overline{i} - (2xy + y)\overline{j}$	j		
which moves a particle in xy- plane from (0,0) to (1,1) along the parabola $y^2=x$ OR	• 14M	CO4	L2
Show that the vector $(x^2-yz)\overline{i}+(y^2-zx)\overline{j}+(z^2-xy)\overline{k}$ irrotational and find its scalar potential.	14M	CO4	L2
Verify Green's theorem in the plane for $\int (xy + y^2)dx + x^2dy$ where C	is		
the region bounded by $y = x$ and $y = x^2$ OR	14M	CO5	L3
Use Divergence theorem to evaluate $\iint (x\overline{i} + y\overline{j} + z\overline{k}).\overline{n}.ds$, where	s		
is the surface bounded by the cone $x^2 + y^2 = z^2$ in the plane $z = 4$.	14M	CO5	L3

1.

2.

3.

4.

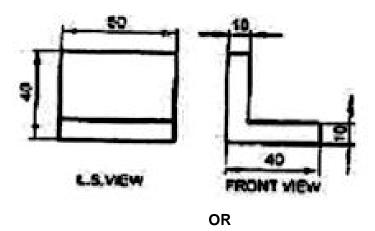
5.

6.

7.

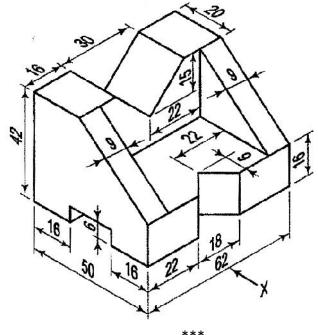
8.

9.


10.

		Hall Ticket Number :														
	(Code: 19A321T												R-19		
	•	I B.Tech. II Semest	er S	upp	lem	ento	ary E	zar	ninc	ıtion	s De	ecem	ber 2	2022		
			I	_		erin		-		I						
		Max. Marks: 70 Answer any five full questic	ons b	•		_			•	om e	ach	unit (5		e: 3 Hc 70 Mai		
					UNI	T–I								Marks	СО	BL
1.		A pentagonal pyramid, bathorizontal and an edge of tocuts it at a distance of 25r top view.	the b	ase	paral	lel to	the	V.P.	A ho	rizon	tal s	ection	plane	14M	CO1	L4
					0	R										
2.		A cone, base 70 mm diam H.P., is cut by a vertical se from the axis. Draw the se	ction	plar	ne, w	hich iew a	is pa	ralle	I to V	•				14M	CO1	L4
3.	a)	Draw the development of altitude 50mm.	later	al su			con	e of	base	dian	netei	r 48mn	n and	7M	CO2	L3
	b)	A Cylinder of 50 mm diar Draw the development of la			face	of th			_	on	its b	ase or	n HP.	7M	CO2	L3
4.		A cube of 50mm edge is inclined at 30° to VP. It inclined at 30° to HP pass Develop the lateral surface	is co	ut by throu	as ugha	face section	n pl nt 12	ane 2mm	perp from	endid top	cular	to VF	and	14M	CO2	L3
5.		A vertical cylinder of base base diameter 90mm and each other at right angle. lines of intersection.	axis	140	mm	I 20m long. ojecti	The	axe	s of	the t	wo s	solids I	oisect	14M	CO3	L4
6.		A vertical square prism,	had	so 5			o ar	nd a	vie (o∩mn	n ie	comp	باعلمان			
0.		penetrated by a horizonta that their axes bisect. The while the faces of the two projections of the solids sh	l squ e axi o pr	iare is of isms ig lin	prisn the are	n, ba horiz equa inter	se 3 onta ally i	5mm I pris inclin	side m is	e and para	l axi allel	s 90mi	m, so V.P.,	14M	CO3	L4
7.		Draw the isometric view of 25mm and axis 60mm lon with an edge of the base p	g. Ti	ne so	olid o	bject		•	•					14M	CO4	L4
8.	a)	Draw the isometric view horizontal and vertical.	of	а ре			of 50)mm	diar	netei	wit	h its	plane	7M	CO4	L4
	b)	Draw the isometric view horizontal and vertical.	of	a h	exag	on c	of 50)mm	diar	neter	wit	h its	plane	7M	CO4	L4
														Page :	1 of 2	

Code: 19A321T


UNIT-V

9. Draw the isometric view of the following figure

14M CO5 L4

10. Draw the front view, top view and side view of the solid object given below:

14M CO5 L4

Hall Ticket Number :

Code: 19A322T

R-19

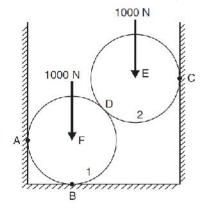
I B.Tech. II Semester Supplementary Examinations December 2022

Engineering Mechanics

(Common to CE & ME)

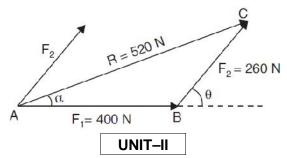
Max. Marks: 70

Time: 3 Hours

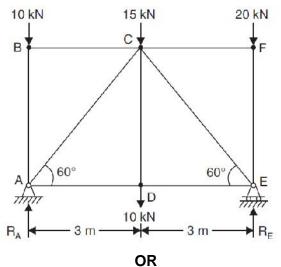

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

Marks CO BL

UNIT-I


1. Two spheres, each of weight 1000 N and of radius 25 cm rest in a horizontal channel of width 90 cm as shown in Fig. Find the reactions on the points of contact A, B and C.

14M 1 3

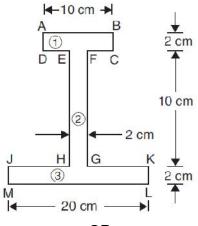

OR

2. The resultant of two forces F1 = 400 N and F2 = 260 N acting at point A is 520 N. Determine the angle between the two forces and the angle between the resultant and force F1.

14M 1 3

3. A truss is shown in Fig. Find the forces in all the members of the truss and indicate it is in tension or compression.

14M 2 3


Code: 19A322T

4. The force required to pull a body of weight 50 N on a rough horizontal plane is 15 N. Determine the co-efficient of friction if the force is applied at an angle of 15° with the horizontal.

14M 2 3

UNIT-III

5. Find the moment of inertia of the section shown in Fig. about the centroidal axis X-X perpendicular to the web.

14M 3 3

OR

6. State and prove the theorem of parallel axis.

14M 3 1

UNIT-IV

7. An electric train starting from rest attains a maximum speed of 100 kmph in 20 second. Determine (i) its acceleration assuming it to be uniform, (ii) distance covered during this time period, and (iii) its velocity 15 seconds after starting from rest.

14M 4 3

OF

8. A wheel rotating about a fixed axis at 20 r.p.m. is uniformly accelerated for 70 second during which time it makes 50 revolutions. Find: (i) angular velocity at the end of this interval, and (ii) time required for speed to reach 100 revolutions per minute.

14M 4 3

UNIT-V

9. A uniform homogeneous cylinder rolls without slip along a horizontal level surface with a translational velocity of 20 cm/s. If its weight is 0.1 N and its radius is 10 cm, what is its total kinetic energy?

14M 5 4

OR

10. A tangential force of 1800 N is acting on a shaft of diameter 10 mm. Find the work done by the force for one revolution of the shaft.

14M 5 3

Hall Ticket Number :						

Code: 19AC23T

R-19

I B.Tech. II Semester Supplementary Examinations December 2022

Engineering Physics

(Common to CE & ME)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

			Marks	СО	Blooms Level
		UNIT-I			
1.	a)	Define vector and write basic laws of vectors	7M	1	L1
	b)	What is conservative force and explain it	7M	1	L1
		OR			
2.	a)	Summarize the angular momentum of rigid body	6M	1	L2
	b)	Explain conservative force is independent of its path	M8	1	L2
		UNIT-II			
3.		Derive Sabine's formula in an enclose by decay process	14M	2	L3
		OR			
4.	a)	Mention the factors influence reverberation time	9M	2	L2
	b)	What is ultrasonic and write properties	5M	2	L1
		UNIT-III			
5.	a)	Describe electronic polarizability of dielectric and derive it	10M	3	L2
	b)	Mention applications of dielectrics	4M	3	L2
		OR			
6.		Deduce the expression for Internal/local field	14M	3	L3
		UNIT-IV			
7.	a)	Derive the expression for acceptance angle of an optical fiber	8M	4	L3
	b)	List the applications of optical fiber in various fields	6M	4	L2
	,	OR			
8.	a)	Recite the semiconductor laser for production of laser	8M	4	L2
	b)	Describe construction of optical fiber	6M	4	L2
_		UNIT-V		_	
9.	a)	Illustrate fiber optic methods of pressure sensing	10M	5	L3
	b)	Brief the temperature sensor	4M	5	L2
40	_ \	OR	-1.	_	
10.	,	Write a note on Strain and pressure sensors	7M	5	L1
	b)	Describe piezo electric sensor in brief	7M	5	L2

Hall Ticket Number :							
	,					1	D 10
							N-17

Code: 19A521T / 19A522T

I B.Tech. II Semester Supplementary Examinations December 2022

Python Programming / Programming through Python

(Common to CE, ME & CSE)

(Common to EEE & ECE)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

Marks CO

		UNIT-I	Marks	СО	BL
1.	a)	Write a python program to find weather a given number is odd or even.	7M	CO1	L3
	b)	Who invented python? Write what you know about python programming.	7M	CO1	L2
	,	OR			
2.		Write about operator precedence in detail	14M	CO1	L4
		UNIT-II			
3.		Define set and illustrate set in Python with suitable example	14M	CO2	L2
		OR			
4.		Write a python program for temperature conversion using functions	14M	CO2	L4
		UNIT-III			
5.		Write a python program to count the number of vowels in a string provided			
		by the user.	14M	CO3	L3
		OR			
6.	a)	Explain the process of top-down design	7M	CO3	L2
	b)	Differentiate between a text file and a binary file	7M	CO3	L3
		UNIT-IV			
7.	a)	Define class and explain it with suitable example	7M	CO4	L2
	b)	Explain the concept of an object	7M	CO4	L2
	ŕ	OR			
8.		Write in detail about special methods in python	14M	CO4	L3
		UNIT-V			
9.		Define queue. Illustrate queue operations with the examples.	14M	CO5	L3
٥.		OR	1-7111	000	LO
10.		Draw and explain the operations on stack using liked list.	14M	CO5	L3
		Dian and explain the operations on stack doing income.	i TIVI		LO
