Code: 19A421T

| B.Tech. || Semester Supplementary Examinations July/August 2022

Electronic Devices and Circuits

(Common to EEE \& ECE)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

```
                        *********
```

Marks CO

UNIT-I

1. a) Summarize the different BJT configurations.

7M $\quad 1$
b) Discuss how voltage divider bias is more advantageous than fixed bias.

7M 1

OR

2. a) Determine the stability factor of a fixed bias silicon transistor with the following specifications: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=3 \mathrm{~K}$ Ohms, $\mathrm{R}_{\mathrm{B}}=8 \mathrm{~K}$ Ohms, $B=50$, and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$.
b) Write short notes on Thermal Resistance and Thermal Stability.

UNIT-II

3. a) Write the necessary steps for gate bias circuit design and voltage divider bias circuit design.
b) What are the differences between Bipolar Junction Transistor \& Field Effect Transistor?

OR

4. Explain the construction, working principle and characteristics of enhancement mode MOSFETS.

UNIT-III

5. a) Draw and explain the amplifier equivalent circuit in detail
b) Explain about Voltage gain, Current gain and Power gain of an amplifier when it is drawn in equivalent circuit form

OR
 R

6. Derive the expressions for input resistance, output resistance and voltage gain of an emitter follower circuit.

14M 3
UNIT-IV
7. a) What is the importance of input impedance in amplifier circuit, Explain?

7M $\quad 4$
b) What are the advantages of FET amplifier over BJT amplifier?

7M 4

OR

8. a) Draw and explain the notations of AC Equivalent circuit for MOSFETs

$7 M$	4	2
$7 M$	4	1
$7 M$	5	1
$7 M$	5	2

OR

10. a) In what respect is an LED different from an ordinary PN junction diode? State applications of LED.
b) Explain the working principle of UJT with neat diagram. Mention its applications.
b) Briefly explain about Common Source MOSFET Amplifier.

UNIT-V

9. a) Discuss the principle of operation of UJT.
b) Write a note on LED.

7M 5
2

Code: 19AC24T

| B.Tech. || Semester Supplementary Examinations July/August 2022

Engineering Chemistry

(Common to EEE \& ECE)

Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

1. a) List out the different types of ion selective electrodes.
b) Define electrode potentials with examples.

4M CO1

OR

2. a) Differentiate an electrochemical cell and galvanic cell.
b) Apply electrochemical convention methods to represent the cell.

7M CO1

UNIT-II

3. a) List out the Merits of fuel cell

8M CO2
b) Write short notes on i) electrode ii) electrolyte iii) salt bridge.

6 M CO 2
OR
4. Discuss the construction and working principle of Zinc-air battery

14M CO2

UNIT-III

5. a) Write short notes on the preparation of multi-crystalline and amorphous Silicon.

8M CO3
b) List out the various applications of solar energy.

6 M CO 3

OR

6. Illustrate the doping mechanism of n and -p-type Silicon Semiconductors

14M CO3

UNIT-IV

7. a) Write the preparation, properties and uses of urea-formaldehyde resin. $10 \mathrm{M} \quad \mathrm{CO}$
b) What is step growth polymerization? Explain with examples.
$4 \mathrm{M} \quad \mathrm{CO} 4$
OR
8. a) Discuss the various steps of free radical polymerization with examples $10 \mathrm{M} \quad \mathrm{CO}$
b) Explain the various types of stereospecific polymers with examples. 4M CO4

UNIT-V

9. a) List out various application of TEM 10M CO5
b) What are rotaxanes and catenanes? Give examples. 4M co5

OR

10. Explain the function of cyclodextrin based switches,
i) in and out switching
ii) back and forth switching.

14M CO5
Hall Ticket Number :
R-19
Code: 19A522T
| B.Tech. I| Semester Supplementary Examinations July/August 2022

Programming through Python

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO

UNIT-I

1. a) Describe and illustrate Boolean operators with examples.

7M CO1
b) Write a program using if statements in Python.

7M CO1

OR

2. Difference between sequential, selection, and iterative control

14M CO1

UNIT-II

3. Define set and illustrate set in Python with suitable example

14M CO2

OR

4. Define dictionary data type in python? Illustrate dictionary with suitable example.

14M CO2

UNIT-III

5. a) Write a python program to write some text into a file.

7M CO3
b) Discuss about string traversal in python

OR
6. a) How to deal with text files in python?

7M CO3
L3
b) Write a python program to read the lines of a file.
$7 \mathrm{M} \quad \mathrm{CO} 3$
L3

UNIT-IV

7. Illustrate encapsulation with suitable example.

14M CO4
L3

OR

8. a) Explain the difference between a reference and dereferenced value

7M CO4
b) Infer about constructors in Python

7M CO4

UNIT-V
9. What is stack? Demonstrate stack operations with the example.

14M CO5
L3
OR
10. Outline the concept of queue implementation using python list.

14M CO5
L4

Code: 19AC21T

| B.Tech. || Semester Supplementary Examinations July/August 2022

Differential Equations and Vector Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

```
*********
```


UNIT-I

1. Solve $\frac{d^{2} y}{d x^{2}}+y=e^{-x}+e^{x} \sin x$

14M CO1

OR

2. Solve $\left(D^{2}+1\right) x=t \cos t$ given $x=0, \frac{d x}{d t}=0$ at $t=0$.

UNIT-II

3. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x^{2}$

OR

4. Solve $(2 x+3)^{2} \frac{d^{2} y}{d x^{2}}-(2 x+3) \frac{d y}{d x}-12 y=6 x$

14M CO2

UNIT-III

5. Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$

OR

6. Using the method of separation of variables, solve
$\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}$
14M CO3

UNIT-IV

7. Evaluate the line integral $\int_{c}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where c is the square formed by the lines $x= \pm 1$ and $y= \pm 1$.

OR
8. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point (2,-1,2)

UNIT-V

9. Verify Gauss divergence theorem for $\bar{F}=x^{2} \bar{i}+y^{2} \bar{j}+z^{2} \bar{k}$, over the cube formed by the planes $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{b}, \mathrm{z}=0, \mathrm{z}=\mathrm{c}$.

OR

10. Verify Green's theorem in the plane for $\oint\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the region bounded by $x=0, y=0$ and $x+y=1$.
