\square

Code: 19A421T

| B.Tech. || Semester Supplementary Examinations November 2023

Electronic Devices and Circuits

(Common to EEE \& ECE)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO
BL

UNIT-I

1. a) What is meant by Q-point? What factors to be considered for selecting the Q-point?
b) Define thermal runaway. How it can be avoided?

7M 1	1

OR
2. a) Determine the stability factor of a fixed bias silicon transistor with the following specifications: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=3 \mathrm{~K}$ Ohms, $\mathrm{R}_{\mathrm{B}}=8 \mathrm{~K}$ Ohms, $B=50$, and $V_{b E}=0.7 \mathrm{~V}$.
7M 13
b) Write short notes on Thermal Resistance and Thermal Stability.
7M 16
3. a) Sketch and Explain the Transfer Characteristics of P - channel JFET.
7M 22
b) Distinguish between Gate bias \& voltage divider bias for basic J-FET.
7M 23
4. a) What do you mean by Trans conductance, Drain resistance and Amplification factor.
b) Find out Trans conductance of Common Source Configuration having its drain resistance $r_{d}=20 \mathrm{~K}$ Ohms and Amplification factor is 40 .
5. a) Draw and explain the amplifier equivalent circuit in detail
b) Explain about Voltage gain, Current gain and Power gain of an amplifier when it is drawn in equivalent circuit form

7M 32

OR

6. Derive the expressions for input resistance, output resistance and voltage gain of an emitter follower circuit.

14M 32
7. Draw the small-signal model of common drain FET amplifier. Derive expressions for voltage gain and output resistance?

14M 43
OR
8. a) If properly biased, FET will act as a voltage controlled voltage source, justify.
7M $4 \quad 4$
b) Write the differences between Common Drain and common source Amplifiers.

7M
42

UNIT-V

9. a) In what respect is an LED different from an ordinary PN junction diode? State applications of LED.

7 M 53
b) Explain the working principle of UJT with neat diagram. Mention its applications.
$7 \mathrm{M} \quad 5 \quad 4$

10. a) With a neat sketch explain two transistor model of SCR	7 M	5	3
b) Discuss in detail about Schottky Barrier Diode.	7 M	5	3

UNIT-I

1. a) Write about the process of computational problem solving

CO1
b) Who invented python? Write what you know about python programming. $\quad 7 \mathrm{M} \quad \mathrm{CO} 1 \quad \mathrm{~L} 2$ OR
$\begin{array}{llll}\text { a) Illustrate infinite loop with an example } & 7 \mathrm{M} & \mathrm{CO1} & \mathrm{~L} 2 \\ \text { b) Write a program using while statements in Python } & 7 \mathrm{M} & \mathrm{CO} & \mathrm{L} 3\end{array}$
3. Summarize in detail about function routine.

9M CO3 L2
b) What is exception handling?

7 M CO3 L3
b) How to deal with text files in python?

L2
b) Explain the concept of an object $\quad 7 \mathrm{M} \mathrm{CO4} \mathrm{\quad L2}$

OR

8. a) Justify the need of automatic garbage collection in python 7M CO4 L5
b) Summarize the concept of memory allocation and deallocation. 7M CO4 L5

UNIT-V

9. What is stack? Demonstrate stack operations with the example.

Code: 19AC21T

| B.Tech. || Semester Supplementary Examinations November 2023

Differential Equations and Vector Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Solve $\left(D^{2}+4\right) y=\cos x$

7M CO1 L3
b) Solve $\left(D^{2}+6 D+9\right) y=e^{-3 x}$

7M CO1 L3

OR

2. Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=x e^{3 x}+\sin 2 x$

UNIT-II

3. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x^{2}$
4. Solve $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=2 \sin [\log (1+x)]$

14M CO2 L3

UNIT-III

5. a) Form the partial differential equations by eliminating arbitrary functions from
$f\left(x^{2}+y^{2}, z-x y\right)=0$
b) Form the partial differential equation by eliminating arbitrary constants a and b

OR

OR

6. a) Form the partial differential equation by eliminating arbitrary function from $z=f\left(x^{2}+y^{2}\right)$
b) Solve $p y z+q z x=x y$

7 M CO3 L3
7 M CO3 L3

UNIT-IV

7. a) Find div \bar{f} where $\bar{f}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$

7 M CO4 L2
b) Find grad f where $f=x^{3}+y^{3}+3 x y z$

7M CO4 L2

OR

8. Prove that $r^{n} \bar{r}$ is solenoidal if $n=-3$.

14M CO4 L2

UNIT-V

9. Verify stokes theorem for the function $\bar{F}=x^{2} \bar{i}+x y \bar{j}$ integrated around the square in the plane $\mathrm{z}=0$ whose sides are along the lines $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}$.

14 M CO5 L3

OR

10. Using Green's theorem evaluate $\oint_{C}\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$, where C is the closed curve of the region bounded by $y=x^{2}$ and $y^{2}=x$.
