$\square$
Hall Ticket Number:
Code: 19A421T

## R-19

# | B.Tech. || Semester Supplementary Examinations December 2022 Electronic Devices and Circuits 

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. Explain $D C$ and $A C$ load line analysis of a transistor with neat sketches.

|  | UNIT-I | Marks CO BL |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1. | Explain DC and AC load line analysis of a transistor with neat sketches. | 14M | 1 | 2 |
| OR |  |  |  |  |
| 2. a) | Compare different Biasing Circuits with respect to a BJT. | 7M | 1 | 5 |
| b) | What is meant by Q-point? What factors to be considered for selecting the Q-point? | 7M | 1 | 1 |
|  | UNIT-II |  |  |  |
| 3. a) | Explain different FET Biasing methods. Also explain their merits and demerits. | 7M | 2 | 2 |
| b) | Distinguish between Enhancement mode and Depletion mode MOSFETs. | 7M | 2 | 3 |
| OR |  |  |  |  |
| 4. a) | Write short notes on MOSFET Biasing Circuits. | 7M | 2 | 6 |
| b) | The P-channel FET has a IDss $=-12 \mathrm{~mA}, \mathrm{Vp}=5 \mathrm{v}, \mathrm{Vgs}=5.32 \mathrm{v}$ calculate ID, $\mathrm{g}_{\mathrm{m}}$ and $\mathrm{g}_{\mathrm{m}}$. | 7M | 2 | 3 |
|  | UNIT-III |  |  |  |
| 5. a) | Explain the steps to be followed for drawing DC and AC equivalent circuits for transistor amplifier and sketch them | 7M | 3 | 2 |
| b) | Write a short note on DC and AC load lines | 7M | 3 | 6 |
| OR |  |  |  |  |
| 6. a) | With the help a graphical demonstration, illustrate how a transistor can be used as an amplifier. | 7M | 3 | 2 |
| b) | List out the characteristics of CE, CB and CC amplifiers | 7M | 3 | 1 |
|  | UNIT-IV |  |  |  |
| 7. | Draw the small-signal model of common drain FET amplifier. Derive expressions for voltage gain and output resistance? | 14M | 4 | 3 |
| OR |  |  |  |  |
| 8. a) | With neat diagrams, explain single stage amplifier with waveforms. | 7M | 4 | 3 |
| b) | The gain of a certain FET amplifier with a source resistance of zero is 25 . Determine the value of drain resistance, if the trans Conductance is $5500 \mu \mathrm{~s}$. | 7M | 4 | 4 |
|  | UNIT-V |  |  |  |
| 9. a) | With a neat sketch, explain the characteristics of SCR. | 7M | 5 | 3 |
| b) | Discuss about the Photo Diode with neat symbol. | 7M | 5 | 2 |
| OR |  |  |  |  |
| 10. a) | Write a note on LED. | 7M | 5 | 1 |
| b) | Discuss in detail about Schottky Barrier Diode. | 7M | 5 | 3 |

## UNIT-IV

8. a) With neat diagrams, explain single stage amplifier with waveforms.7M 44
9. a) With a neat sketch, explain the characteristics of SCR.7M 52
10. a) Write a note on LED. 7M ..... 53

## R-19

## Code: 19AC24T

| B.Tech. || Semester Supplementary Examinations December 2022 Engineering Chemistry
(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
*********
Marks CO

## UNIT-I

1. a) Explain the working principles of electrolytic cell.

8M $\quad 1$
b) Explain the measurement of electrode potentials for copper. $6 \mathrm{M} \quad 1$

## OR

2. a) Illustrate the working principle of concentration cells 7M 1
b) Derive Nernst equation.

7M 1

## UNIT-II

3. a) Differentiate the Primary and secondary batteries
7M 2
b) Classify the fuel cells based on their electrolytes

7M 2

## OR

4. a) Write short notes on i) electrode ii) electrolyte iii) salt bridge.

6M 2
b) What are the basic constituents of batteries

8M 2

## UNIT-III

5. a) What are the advantages of CVD method?

8M 3
b) List out the steps involved in czochralski Process and float-zone process

6M 3

## OR

6. Explain the production of solar grade silicon from Quartz

14M 3

## UNIT-IV

7. a) Illustrate the conducting mechanism of poly-acetylene

10M 4
b) Discuss the difference between Thermoplastics and Thermosettings

4M

## OR

8. a) List out the uses of thermosetting polymers with examples,

6M 4
b) Write the preparation, properties and uses of urea-formaldehyde resin.

8M 4

## UNIT-V

9. a) Describe the linear prototype motion of an autonomous light-powered molecular motor with example.

7M 5
b) Discuss the molecular motion of molecular elevator

7M 5
OR
10. Illustrate the chemical synthesis of nanomaterials by using sol-gel method

## Code: 19A521T / 19A522T

| B.Tech. || Semester Supplementary Examinations December 2022

## Python Programming / Programming through Python

(Common to CE, ME \& CSE) (Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

Marks CO BL

|  | UNIT-I |  |  |
| :---: | :---: | :---: | :---: |
| 1. a) | Write a python program to find weather a given number is odd or even. | 7M | CO 1 |
|  | Who invented python? Write what you know about python programming. | 7M | CO1 |
|  | OR |  |  |
| 2. | Write about operator precedence in detail | 14M | CO 1 |
|  | UNIT-II |  |  |
| 3. | Define set and illustrate set in Python with suitable example | 14M | CO 2 |
|  | OR |  |  |
| 4. | Write a python program for temperature conversion using functions | 14M | CO 2 |
|  | UNIT-III |  |  |
| 5. | Write a python program to count the number of vowels in a string provided by the user. | 14M | CO3 |
|  | OR |  |  |
| 6. a) b) | Explain the process of top-down design | 7M | CO 3 |
|  | Differentiate between a text file and a binary file | 7M | CO 3 |
|  | UNIT-IV |  |  |
| 7. a) <br> b) | Define class and explain it with suitable example | 7M | CO 4 |
|  | Explain the concept of an object | 7M | CO 4 |
|  | OR |  |  |
| 8. | Write in detail about special methods in python | 14M | CO 4 |
|  | UNIT-V |  |  |
| 9.10. | Define queue. Illustrate queue operations with the examples. | 14M | CO 5 |
|  | OR |  |  |
|  | Draw and explain the operations on stack using liked list. | 14M | CO 5 |

## Code: 19AC21T

| B.Tech. || Semester Supplementary Examinations December 2022

## Differential Equations and Vector Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
$* * * * * * * * *$

## UNIT-I

1. Solve $\left(D^{2}+3 D+2\right) y=e^{-x}+x^{2}+\cos x$

14M CO1
OR
2. Solve $\frac{d^{2} y}{d x^{2}}+4 y=\sec 2 x$ by using method of variation of parameters.

UNIT-II
3. An uncharged condenser of capacity $C$ is charged by applying an e.m.f $E \sin \left(\frac{t}{\sqrt{L C}}\right)$, through leads of self-inductance L and negligible resistance, prove that for any time $t$, the charge on one the plate is
$\frac{E C}{2}\left[\sin \left(\frac{t}{\sqrt{L C}}\right)-\frac{t}{\sqrt{L C}} \cos \left(\frac{t}{\sqrt{L C}}\right)\right]$.
4. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x$.

14 M CO 2 L 3

## UNIT-III

5. Solve $\left(p^{2}+q^{2)}\right) y=q z$ by using Charpits method.

OR
14M CO3
6. Form the partial differential equation by eliminating arbitrary constants a and b from $(x-a)^{2}+(y-b)^{2}=z^{2} \cot ^{2} \alpha$

14 M CO
Form the partial differential equation by eliminating arbitrary function from $z=f\left(x^{2}+y^{2}\right)$

## UNIT-IV

7. Find the work done by a force $\bar{F}=\left(x^{2}-y^{2}+x\right) \bar{i}-(2 x y+y) \bar{j}$ which moves a particle in xy -plane from $(0,0)$ to $(1,1)$ along the parabola $y^{2}=x$.
8. Show that the vector $\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-z x\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}$ is irrotational and find its scalar potential.

14M CO4

## UNIT-V

9. Verify Green's theorem in the plane for $\int\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the region bounded by $y=x$ and $y=x^{2}$

14M CO5

## OR

10. Use Divergence theorem to evaluate $\iint(x \bar{i}+y \bar{j}+z \bar{k}) \cdot \bar{n} \cdot d s$, where s is the surface bounded by the cone $x^{2}+y^{2}=z^{2}$ in the plane $z=4$.
