		Hall Ticket Number :	R-1	9	
	С	ode: 19AC23T			
		I B.Tech. II Semester Supplementary Examinations July/Au	gust 202	2	
		Engineering Physics (Common to CE & ME)			
	1	Max. Marks: 70	Time: 3	Hours	
		Answer any five full questions by choosing one question from each unit (5			
		*****			Blooms
			Marks	CO	Level
		UNIT–I			
1.	a)	Define vector and write basic laws of vectors	7M	CO1	L1
	b)	What is conservative force and explain it	7M	CO1	L1
		OR			
2.	a)	Prove that conservative force is negative gradient of potential energy	7M	CO1	L3
	b)	Deduce the expression for torque of a particle in a frame of reference	7M	CO1	L3
		UNIT–II			
3.	a)	What is ultrasonic and write properties	6M	CO2	L1
0.	b)	Describe the NDT in detail	8M	CO2	L2
	5)	OR	0.11	002	
4.	a)	Brief the inverse piezo-electric effect	4M	CO2	L2
••	b)	Describe how magnetostriction method is used to produce ultrasonic waves	10M	CO2	L2
	2)			002	
		UNIT–III			
5.	a)	What is dielectric and give any three examples	4M	CO3	L1
	b)	Describe the various types of dielectric polarization	10M	CO3	L2
		OR			
6.	a)	Deduce orbital magnetic moment in terms of Bhor Magnetron	10M	CO3	L3
	b)	Derive Clausius Mosetti relation	4M	CO3	L2
		UNIT–IV			
7.	a)	Discuss the construction and working of He-Ne laser	8M	CO4	L2
••	b)	Mention the applications of laser in various fields	6M	CO4	 L1
	2)	OR	•		
8.	a)	Distinguish spontaneous and stimulated emissions	6M	CO4	L2
•	b)	Formulate the requirements for laser ray process	8M	CO4	 L2
	~)		0		
		UNIT–V			
9.		Write a detailed note on various types of sensors	14M	CO5	L2
		OR			
0.		Describe the detailed application of fire and smoke sensors	14M	CO5	L2

	Hall Ticket Number :			1
	Code: 19A521T	R-1	9	
	I B.Tech. II Semester Supplementary Examinations July/Aug	just 202:	2	
	Python Programming			
	(Common to CE, ME & CSE) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5)	Time: 3		
	*******		,	
		Marks	CO	Blooms Level
	UNIT–I			
1. :			CO1	L2
	b) Write a program using if statements in Python.	7M	CO1	L3
-	OR			
2.	Difference between sequential, selection, and iterative control	14M	CO1	L4
2	UNIT-II	4 4 5 4	000	
3.	Define set and illustrate set in Python with suitable example OR	1410	CO2	L2
4.	Define dictionary data type in python? Illustrate dictionary with suitable	0		
4.	example.		CO2	L3
				_
	UNIT–III			
5. 8	a) Write a python program to write some text into a file.	7M	CO3	L2
	b) Discuss about string traversal in python	7M	CO3	L2
	OR			
6.	a) How to deal with text files in python?	7M	CO3	L3
	b) Write a python program to read the lines of a file.	7M	CO3	L3
	UNIT–IV			
7.	Illustrate encapsulation with suitable example.	14M	CO4	L3
	OR			
8. :	, ·		CO4	L3
	b) Infer about constructors in Python	7M	CO4	L4
•	UNIT-V		<u> </u>	
9.	What is stack? Demonstrate stack operations with the example.	14M	CO5	L3
10	OR Outline the concent of queue implementation using puther list	4 4 5 4	005	1 4
10.	Outline the concept of queue implementation using python list.	14M	CO5	L4

	Hall Ticket Number :			1
	Code: 19AC21T	R-1	9	
	I B.Tech. II Semester Supplementary Examinations July/Aug Differential Equations and Vector Calculus (Common to All Branches)	just 202	2	_
	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5> ********	Time: 3 (14 = 70 /		
	UNIT–I	Marks	со	Blooms Level
1.	Solve $\frac{d^2 y}{dx^2} + y = e^{-x} + e^x \sin x$ OR	14M	CO1	L3
2.	Solve $(D^2 + 1)x = t \cos t$ given $x = 0, \frac{dx}{dt} = 0$ at $t = 0$.	14 M	CO1	L3
3.	Solve $x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^2$ OR	14M	CO2	L3
4.	Solve $(2x+3)^2 \frac{d^2 y}{dx^2} - (2x+3)\frac{dy}{dx} - 12y = 6x$	14M	CO2	L3
5.	Solve $x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$ OR	14M	CO3	L3
6.	Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u \text{ where } u(x,0) = 6e^{-3x}$	14M	CO3	L3
7.	UNIT-IV Evaluate the line integral $\int [(x^2 + xy)dx + (x^2 + y^2)dy]$ where c is the square)		
	formed by the lines $x = \pm 1$ and $y = \pm 1$. OR	14M	CO4	L2
8.	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (2,-1,2)	9 14M	CO4	L2
9.	UNIT-V Verify Gauss divergence theorem for $\overline{F} = x^2 \overline{i} + y^2 \overline{j} + z^2 \overline{k}$, over the cube formed by the planes x=0, x=a, y=0,y=b, z=0,z=c. OR	e 14M	CO5	L3
10.	Verify Green's theorem in the plane for $\oint (3x^2 - 8y^2)dx + (4y - 6xy)dy$ where C is the region bounded by $x = 0, y = 0$ and $x + y = 1$. ***	9 14M	CO5	L3

Hall Ticket Number :												
----------------------	--	--	--	--	--	--	--	--	--	--	--	--

Code: 19A322T

Max. Marks: 70

I B.Tech. II Semester Supplementary Examinations July/August 2022

Engineering Mechanics

(Common to CE & ME)

Time: 3 Hours

14M

1

3

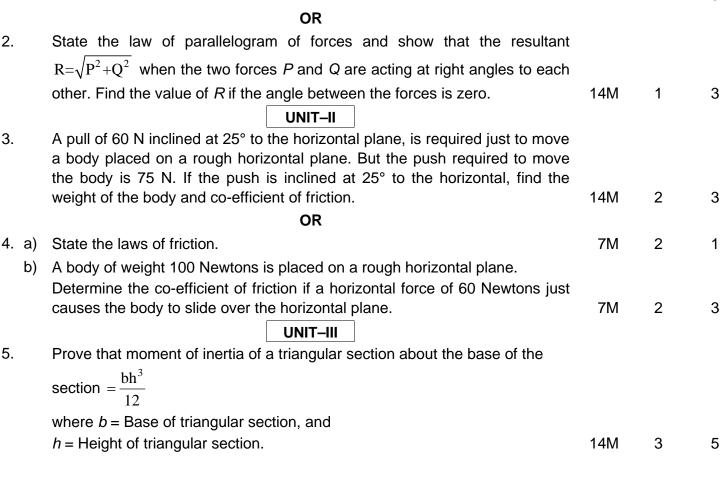
R-19

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) *******

Morko	CO	Bloom		
Marks	CO	Level		

UNIT-I

1. Two spheres, each of weight 1000 N and of radius 25 cm rest in a horizontal channel of width 90 cm as shown in Fig. Find the reactions on the points of contact A, B and C.


1000 N

B

1000 N

- 2. State the law of parallelogram of forces and show that the resultant $R = \sqrt{P^2 + Q^2}$ when the two forces P and Q are acting at right angles to each other. Find the value of *R* if the angle between the forces is zero. 14M 1 UNIT-II A pull of 60 N inclined at 25° to the horizontal plane, is required just to move 3. a body placed on a rough horizontal plane. But the push required to move the body is 75 N. If the push is inclined at 25° to the horizontal, find the weight of the body and co-efficient of friction. 2 14M OR
- b) A body of weight 100 Newtons is placed on a rough horizontal plane. Determine the co-efficient of friction if a horizontal force of 60 Newtons just causes the body to slide over the horizontal plane.
- 5. Prove that moment of inertia of a triangular section about the base of the

5

	OR			
6.	State and explain theorems of Pappus-Guldinus.	14M	3	1
7.	A boy drops a stone from the top of well vertically downwards into it. The splash is heard by him after 6 seconds. Find the well depth by taking sound velocity as 400 m/s.	14M	4	3
	OR			
8.	A car moving at a constant speed of 60kmph enters a curved path of radius of curvature measuring 100 m. Determine its total acceleration.	14M	4	3
9.	Find the acceleration of bodies and tension in the string joining A and B shown in Fig.			
	5 kg 10 kg A B 15 N			
		14M	5	3
	OR			
10.	A block is pushed with a velocity of 10 m/s along a rough horizontal plane, whose coefficient of kinetic friction is 0.25 and that of static friction is 0.3. Determine the time taken for the block to come to a stop.	14M	5	3

Code: 19A322T