| B.Tech. || Semester Supplementary Examinations August 2021

Differential Equations and Vector Calculus

(Common to All Branches)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

$$
* * * * * * * * *
$$

Marks CO

UNIT-I

1. a) Solve $\left(D^{2}+5 D+6\right) y=e^{x}$

7M CO1
b) Solve $\left(D^{2}+4\right) y=\cos x$

7M - CO1

OR

2. Solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$ by using method of variation of parameters.

UNIT-II

3. Solve $(2 x-1)^{2} \frac{d^{2} y}{d x^{2}}+(2 x-1) \frac{d y}{d x}-2 y=8 x^{2}-2 x+3$

OR

4. Solve $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=2 \sin [\log (1+x)]$

UNIT-III

5. a) Form the partial differential equations by eliminating arbitrary functions from $z=f(x+a t)+g(x-a t)$
b) Solve $p y z+q z x=x y$

7 M CO3

OR

6. Using the method of separation of variables, solve

$$
\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y} \text { where } u(0, y)=8 e^{-3 y}
$$

UNIT-IV

7. a) Find grad f where $f=x^{3}+y^{3}+3 x y z$
b) Find the directional derivative of $\phi=x^{2}-2 y^{2}+4 z^{2}$ at $(1,1,-1)$ in the direction of $2 \bar{i}+\bar{j}-\bar{k}$.

7M CO4
L2

OR

8. Prove that $\nabla^{2}\left(r^{n}\right)=n(n+1) r^{n-2}$

UNIT-V

9. Using Green's theorem evaluate $\oint_{C}\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$, where C is the closed curve of the region bounded by $y=x^{2}$ and $y^{2}=x$.

OR

10. Use Stoke's theorem to evaluate $\int_{C}[(x+y) d x+(2 x-z) d y+(y+z) d z]$ where C is the boundary of the triangle with vertices $(2,0,0),(0,3,0)$ and $(0,0,6)$.

Code: 19A321T

R-19

| B.Tech. || Semester Supplementary Examinations August 2021

Engineering Graphics-II

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

1. A cube of 35 mm long edges is resting on the HP on one of its faces with a vertical face inclined at 30° to VP. It is cut by a section plane parallel to VP and 9 mm away from the axis and further away from the VP. Draw its sectional front view and the top view.

OR

2. A hexagonal pyramid, base 30 mm side and axis 65 mm long, is resting on its base on the H.P. with two edges parallel to the V.P. It is cut by a section plane, perpendicular to the V.P. inclined at 45° to the H.P. and intersecting the axis at a point 25 mm above the base. Draw the front view, sectional top view and true shape of the section.

UNIT-II

3. Draw the development of lateral surface of a hexagonal pyramid with a 30 mm base side and a 60 mm long axis, which is resting on its base in the HP such that an edge of the base is perpendicular to VP.

OR

4. A hexagonal prism having base with a 30 mm side and a 70 mm axis, is resting on its base on the ground with a side of the base inclined at 45° to the VP. It is cut by a section plane making an angle of 45° to HP and passing through the point 15 mm below the top end of the axis. Obtain the development of the lateral surface of the truncated prism.

UNIT-III

5. A vertical square prism, base 50 mm side and axis 90 mm is completely penetrated by a horizontal square prism, base 35 mm side and axis 90 mm , so that their axes bisect. The axis of the horizontal prism is parallel to the V.P., while the faces of the two prisms are equally inclined to the V.P. Draw the projections of the solids showing lines of intersection.

OR

6. A vertical cylinder of 80 mm diameter is completely penetrated by another cylinder of 60 mm diameter their axes bisecting each other at right angles. Draw their projections showing curves of penetration, assuming the axis of the penetrating cylinder to be parallel to the VP and both cylinders having 120 mm axis.

UNIT-IV

7. a) Draw the isometric view of a square of 40 mm in both horizontal and vertical plane.

7M CO4
b) Draw the isometric view of an equilateral triangle of 40 mm side with a side horizontal and the plane of the triangle being vertical.

7M CO4

OR

8. Draw the isometric view of a circle of 50 mm diameter with its plane horizontal and vertical.

14M CO4

UNIT-V

9. Draw the isometric view of the following figure

OR

10. Draw the front view, top view and side view of the solid object given below:

14M CO5 L4
| B.Tech. || Semester Supplementary Examinations August 2021

Engineering Mechanics

(Common to CE \& ME)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

1. a) State and prove Varignon's theorem.
b) Differentiate between:
(i) Concurrent and non-concurrent forces and
(ii) Coplanar and non-coplanar forces

OR

2. a) State and prove Lami's theorem.
b) A lamp weighing 5 N is suspended from the ceiling by a chain. It is pulled aside by a horizontal cord until the chain makes an angle of 60° with the ceiling as shown in Fig. Find the tensions in the chain and the cord by applying Lami's theorem.

UNIT-II

3. Determine the forces in all the members of the truss shown in Fig. and indicate the magnitude and nature of forces on the diagram of the truss. All inclined members are at 60° to horizontal and length of each member is 2 m .

4. The force required to pull a body of weight 50 N on a rough horizontal plane
is 15 N . Determine the co-efficient of friction if the force is applied at an angle
5. The force required to pull a body of weight 50 N on a rough horizontal plane
is 15 N . Determine the co-efficient of friction if the force is applied at an angle of 15° with the horizontal.

UNIT-III

5. State and prove the theorem of parallel axis.

OR

6. Find the centre of gravity of the L-section shown in Fig.

UNIT-IV

7. A particle moves along a straight line so that its displacement is metre from a fixed point is given by, $S=2 t^{3}+4 t^{2}-6 t+8$ Find : (i) velocity at start, (ii) velocity after 5 seconds, (iii) acceleration at start and (iv) acceleration after 5 seconds.
8. A car covers 100 m in 10 seconds, while accelerating uniformly at a rate of 1 $\mathrm{m} / \mathrm{s}^{2}$. Determine (i) initial and final velocities of the car. (ii) distance traveled before coming to this point assuming it started from rest and (iii) its velocity after the next 10 seconds.

14M 43

UNIT-V

9. A tangential force of 1800 N is acting on a shaft of diameter 10 mm . Find the work done by the force for one revolution of the shaft.

OR

10. The block and pulley arrangement shown is released from rest. Determine the time taken for the block of mass m_{2} to reach a velocity of $1 \mathrm{~m} / \mathrm{s}$. Neglect the mass of the pulleys and assume that they are frictionless. Take $m_{1}=20 \mathrm{~kg}$ and $m_{2}=15 \mathrm{~kg}$.

Code: 19AC23T

R-19

| B.Tech. || Semester Supplementary Examinations August 2021

Engineering Physics

(Common to CE \& ME)

Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I

1. a) Define torque and angular momentum and how they are related 8M
b) State kepler's laws of gravitation 6M
OR2. a) Differentiate inertial and non-inertial frames of reference6M
b) Describe the angular momentum in a frame of reference 8M
UNIT-II
2. a) Define absorption coefficient and write its expression 4M
b) Mention the factors influence reverberation time 10M
OR
3. List the applications of ultrasonic and describe any one application in detail 14M
UNIT-III
4. a) How the Ferro magnetics are separated as soft and hard magnets 8M
b) What is Ferro magnets and give examples 6M
OR
5. a) Derive ionic polarizability of dielectric in an electric field 8M
b) Describe frequency dependence of variouspolarizabilities 6M
UNIT-IV
6. a) What is LASER and write characteristics of laser 6M
b) Recite the semiconductor laser for production of laser 8M
OR
7. a) Deduce condition of Einstien's coefficients for stimulated emission 10M
b) Describe population Inversion 4M
UNIT-V
8. a) Describe piezo electric sensor in brief 8M
b) Mention how pyroelectric sensors are useful 6M
OR
9. a) Narrate Hall effect sensor in detail 8M
b) Explore bimetallic strip as sensor with diagram 6M
\square
Hall Ticket Number :
Code: 19A521T

R-19

| B.Tech. || Semester Supplementary Examinations August 2021

Python Programming

(Common to CE, ME \& CSE)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

			Marks	co	$\underset{\substack{\text { Blooms } \\ \text { Level }}}{ }$
		UNIT-I			
1. a)	Who invented python? Write	hat you know about python programming.	7M	$\mathrm{CO1}$	L2
	List out arithmetic operators in	python and illustrate them with examples	7M	CO1	L2
		OR			
2. a)	Write a program using while st	atements in Python	7M	$\mathrm{CO1}$	L3
	Explain about membership operators		7M	CO1	L2
		UNIT-II			
3.	What is a list in python? Explain about list in detail.		14M	CO 2	L2
	OR				
4. a)	Write a Python program using programmer-defined functions		7M	CO 2	L3
	Explain the concept of parameter passing for functions		7M	CO 2	L3
		UNIT-III			
5. a)	What is exception handling?		4M	CO 3	L2
	How to Catch and handle exceptions in Python		10M	CO 3	L2
OR					
6. a)	Relate local, global, and built-in namespaces in python.		7M	CO 3	L4
	List some string methods and explain them		7M	CO 3	L3
		UNIT-IV			
7. a)	What is object oriented programming? Explain about object oriented concepts.		7M	CO 4	L2
	Define class and explain it with suitable example		7M	CO4	L2
		OR			
8.	Write a Python class named Student with two attributes student_id, student_name. Add a new attribute student_class and display the entire attribute and their values of the class		14M	CO4	L5
		UNIT-V			
9.	What is stack? Demonstrate stack operations with the example.		14M	CO5	L3
	OR				
10.	Explain in detail about the built	in types for queue in python.	14M	CO5	L3

