Hal	Ticket Number :	D 4	•	7
Cod	e: 19AC21T	R-1	9	
	I B.Tech. II Semester Supplementary Examinations August 2 Differential Equations and Vector Calculus (Common to All Branches)	2021		
	. Marks: 70 ver any five full questions by choosing one question from each unit (5x14 *********		3 Hours Marks)	5
	UNIT-I	Marks	со	Blooms Level
1. a)	Solve $(D^2 + 5D + 6)y = e^x$	7M	CO1	L3
b)	Solve $(D^2 + 4)y = \cos x$	7M	CO1	L3
	OR			
2.	Solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$ by using method of variation of parameters.	14M	CO1	L3
3.	Solve $(2x-1)^2 \frac{d^2 y}{dx^2} + (2x-1)\frac{dy}{dx} - 2y = 8x^2 - 2x + 3$ OR	14M	CO2	L3
4.	Solve $(1+x)^2 \frac{d^2 y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin[\log(1+x)]$	14M	CO2	L3
5. a)	Form the partial differential equations by eliminating arbitrary functions from			
	z = f(x+at) + g(x-at)	7M	CO3	L3
b)	Solve $pyz + qzx = xy$ OR	7M	CO3	L
6.	Using the method of separation of variables, solve			
	$\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y} \text{ where } u(0, y) = 8e^{-3y}$	14M	CO3	L3
	UNIT-IV			
7.a)		7M	CO4	L2
b)	Find the directional derivative of $w = x^2 - 2y^2 + 4z^2$ at (1,1,-1) in the direction of $2\overline{i} + \overline{j} - \overline{k}$.			
	\mathbf{OR}	7M	CO4	L2
8.	Prove that $\nabla^2(r^n) = n(n+1)r^{n-2}$	14M	CO4	L2
9.	UNIT-V Using Green's theorem evaluate $\oint (2xy - x^2)dx + (x^2 + y^2)dy$, where C is			
	the closed curve of the region bounded by $y = x^2$ and $y^2 = x$. OR	14M	CO5	L3
0.	Use Stoke's theorem to evaluate $\int_{C} [(x+y)dx + (2x-z)dy + (y+z)dz]$			
	where C is the boundary of the triangle with vertices $(2, 0, 0)$, $(0, 3, 0)$ and $(0,0,6)$.	14M	CO5	L3
	****END***			

Page **1** of **1**

Ha	all Ticket Number :															-
Code: 19A321T R-19																
	I B.Tech. II S	eme	estei	r Sup	ople	me	ntar	y Ex	ami	nati	ons	Augu	ust 2	2021		
			E	-		-	g Gr	-		•11						
	ax. Marks: 70 Iswer any five full qu	estic	ons b				to C ne qi			om e	ach	unit (Time: (4 = 70		
						****	****									Blooms
						-								Marks	CO	Level
1.	A cube of 35mm lo vertical face incline	•	•		-	g on t										
	and 9mm away frosectional front view	om t	he a	ixis a	and f iew.	furthe	-		-		-			14M	CO1	L4
2	A hexagonal pyran	hid h	200	20m	O m civ		nd av	ic 65	mm	long	ic ro	octina	on			
2.	its base on the H section plane, per intersecting the axi sectional top view a	.P. w bend s at a	vith t icula a poi	wo e r to nt 25	edge the ` mm	s pa V.P. abov	rallel inclir ve the	to t ned a bas	he V at 45	.P. I ⁰ to	t is (the H	cut by H.P. a	'a nd	14M	CO1	L4
					UNI	T-II										
3.	Draw the developr 30mm base side an HP such that an ed	nd a	60m	m lor	ng ax e is p	kis, w erpe	/hich	is re	sting	on it				14M	CO2	L3
					0		•									
4.	A hexagonal prism resting on its base the VP. It is cut b passing through the development of the	on th y a s e poi	ne gr sectionnt 15	ounc on pl 5mm	l with lane belo e of t	n a si mak w the the tr	de of ing a e top	f the an ar end	base ngle of th	incli of 45 e axi	ined 5° to	at 45° HP a	to nd	14M	CO2	L3
	A /1 I				UNI											
5.	A vertical square p penetrated by a ho so that their axes b V.P., while the fac Draw the projection	rizon bisec es c	tal so t. Th f the	quare e axi e two	e pris s of pris	sm, b the h sms a wing	ase (norizo are e	35mr ontal equal	n sid prisn ly ind	e an n is p cline	d axi baral d to	s 90m Iel to t	m, he	14M	CO3	L4
6.	A vertical cylinder of cylinder of 60 mm of Draw their projection the penetrating cyli	diam ons s	eter howi	their ng ci	axes urves	s bise s of p	ecting enet) eac ratio	h oth n, as:	ier at sumi	t righ ng th	t angle e axis	∋s. of			
	120 mm axis.													14M	CO3	L4

Code: 19A321T

CO4

CO4

CO4

L4

L4

L4

7M

14M

UNIT-IV

- 7. a) Draw the isometric view of a square of 40mm in both horizontal and vertical plane.
 - b) Draw the isometric view of an equilateral triangle of 40mm side with a side horizontal and the plane of the triangle being vertical.
 7M

OR

8. Draw the isometric view of a circle of 50mm diameter with its plane horizontal and vertical.

```
UNIT-V
```

9. Draw the isometric view of the following figure

14M CO5 L4

10. Draw the front view, top view and side view of the solid object given below:

END

14M CO5 L4

i ian	Ticket Number :											Г			_
Code	e: 19A322T												R-19)	
	I B.Tech. II S	eme	estei	r Sup	ople	eme	ntar	y Ex	ami	nati	ons ,	Augus	† 2021		
			E	-		-	-	ech							
				(C	omr	non	to C	E & I	ME)				т: о		
	. Marks: 70 ver any five full qu	vestio	ons b	y ch	oosii	-	ne qı *****		on fro	om e	each	unit (5>	Time: 3 (14 = 70 M		-
													Marks	со	Blooms Level
				ſ	U	NIT-I									
1. a)	State and prove	Varigr	non's	s theo	orem								7M	1	1
b)	Differentiate betw	veen:													
	(i) Concurrent an	d non	n-con	curre	ent fo	rces	and								
	(ii) Coplanar and	non-o	copla	anar f	orce	S							7M	1	4
						OR									
2. a)	State and prove I	Lami's	s the	orem	۱.								7M	1	1
b)	A lamp weighing aside by a horiz ceiling as shown applying Lami's t	ontal n in I	coro Fig.	d unt	il the	e cha	in m	akes	an a	angle	of 6	0° with	the		
			2		×60°	hain	ord	•							
3.	Determine the fo	orces	in	all th)51		6 46 0	411.00			- -	7M	1	3

14M 2 3

4. The force required to pull a body of weight 50 N on a rough horizontal plane is 15 N. Determine the co-efficient of friction if the force is applied at an angle of 15° with the horizontal.

14M 2 3

14M

14M

14M

4

5

3

3

1

3

3

3

3

UNIT-III

5. State and prove the theorem of parallel axis.

OR

6. Find the centre of gravity of the *L*-section shown in Fig.

7. A particle moves along a straight line so that its displacement is metre from a fixed point is given by, $S=2t^3 + 4t^2 - 6t + 8$ Find : (*i*) velocity at start, (*ii*) velocity after 5 seconds, (*iii*) acceleration at start and (*iv*) acceleration after 5 seconds. 14M 4

OR

8. A car covers 100m in 10seconds, while accelerating uniformly at a rate of 1 m/s². Determine (i) initial and final velocities of the car. (ii) distance traveled before coming to this point assuming it started from rest and (iii) its velocity after the next 10 seconds.

UNIT-V

9. A tangential force of 1800 N is acting on a shaft of diameter 10 mm. Find the work done by the force for one revolution of the shaft. 14M

OR

10. The block and pulley arrangement shown is released from rest. Determine the time taken for the block of mass m_2 to reach a velocity of 1 m/s. Neglect the mass of the pulleys and assume that they are frictionless. Take $m_1 = 20kg$ and $m_2 = 15kg$.

END

14M 5 3

		Hall Ticket Number :	
	C	Code: 19AC23T	R-19
		I B.Tech. II Semester Supplementary Examinations Augu	st 2021
		Engineering Physics	
		(Common to CE & ME)	
		Aax. Marks: 70	Time: 3 Hours
	,	Answer any five full questions by choosing one question from each unit (*********	3x14 - 70 Marks j
		UNIT–I	
	a)	Define torque and angular momentum and how they are related	8
	b)	State kepler's laws of gravitation	
		OR	
	a)	Differentiate inertial and non-inertial frames of reference	(
	b)	Describe the angular momentum in a frame of reference	;
	2)	UNIT-II Define absorption coefficient and write its expression	
	a) b)	Mention the factors influence reverberation time	10
	0)	OR	
•		List the applications of ultrasonic and describe any one application in detail	1.
	a)	UNIT–III How the Ferro magnetics are separated as soft and hard magnets	8
	b)	What is Ferro magnets and give examples	
	~)	OR	
	a)	Derive ionic polarizability of dielectric in an electric field	8
	b)	Describe frequency dependence of variouspolarizabilities	(
	a)	UNIT-IV What is LASER and write characteristics of laser	
	b)	Recite the semiconductor laser for production of laser	8
	~)	OR	
	a)	Deduce condition of Einstien's coefficients for stimulated emission	10
	b)	Describe population Inversion	
	2)	UNIT–V Describe piezo electric sensor in brief	
	a) b)	Mention how pyroelectric sensors are useful	
	5)	OR	·
	a)	Narrate Hall effect sensor in detail	8
	b)	Explore bimetallic strip as sensor with diagram	(

F	- Hall [·]	Ticket Number :			
			R- 1	9	
C	ode	L B.Tech. II Semester Supplementary Examinations August	2021		
		Python Programming			
		(Common to CE, ME & CSE)			
		Marks: 70	Time: (
А	1500	rer any five full questions by choosing one question from each unit (5x1 ********	14 = 70	Marks)
			Marks	со	Blooms Level
		UNIT-I			2010
1.	a)	Who invented python? Write what you know about python programming.	7M	CO1	L2
	b)	List out arithmetic operators in python and illustrate them with examples	7M	CO1	L2
		OR			
2.	a)	Write a program using while statements in Python	7M	CO1	L3
	b)	Explain about membership operators	7M	CO1	L2
		UNIT-II			
3.		What is a list in python? Explain about list in detail.	14M	CO2	L2
		OR			
4.	a)	Write a Python program using programmer-defined functions	7M	CO2	L3
	b)	Explain the concept of parameter passing for functions	7M	CO2	L3
-	、		48.4	000	
5.	a) b)	What is exception handling?	4M	CO3 CO3	L2 L2
	b)	How to Catch and handle exceptions in Python OR	10M	003	LZ
6.	a)	Relate local, global, and built-in namespaces in python.	7M	CO3	L4
0.	a) b)	List some string methods and explain them	7M	CO3	L3
	5)		7 1 1 1	000	LU
		UNIT-IV			
7.	a)	What is object oriented programming? Explain about object oriented concepts.	7M	CO4	L2
	b)	Define class and explain it with suitable example	7M	CO4	L2
	,	OR			
8.		Write a Python class named Student with two attributes student_id,			
		student_name. Add a new attribute student_class and display the entire			
		attribute and their values of the class	14M	CO4	L5
•		UNIT-V	4 4 5 4	005	1.0
9.		What is stack? Demonstrate stack operations with the example.	14M	CO5	L3
10.		OR Explain in detail about the built in types for queue in python.	1/1	CO5	L3
10.			1-111	000	LJ