H	Hall Ticket Number :			1					
C	ode: 19AC21T	R-1	9						
Lode: 19AC211 I B.Tech. II Semester Supplementary Examinations February 2022 Differential Equations and Vector Calculus (Common to All Branches) Max. Marks: 70 Time: 3 Hours									
	Answer any five full questions by choosing one question from each unit (5x								
		Marks	со	Blooms Level					
4 ->	UNIT-I								
	Solve $(D^2 + 6D + 9)y = e^{-3x}$	7M	CO1	L3					
D)	Solve $(D^2 - 1)y = 3x$	7M	CO1	L3					
	OR								
2.	Solve $\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x$	14M	CO1	L3					
	UNIT–II								
3.	Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$.	14M	CO2	L3					
	OR								
4.	Solve the simultaneous equations $\frac{dx}{dt} + 2y + \sin t = 0, \frac{dy}{dt} - 2x - \cos t = 0$								
	given that $x = 0$ and $y = 0$ when $t = 0$.	14M	CO2	L3					
5. a)	UNIT–III Form the partial differential equation by eliminating arbitrary constants a	1							
0. aj	and b from $(x-a)^2 + (y-b)^2 = z^2 \cot^2 \Gamma$		CO3	L3					
b)	Form the partial differential equation by eliminating arbitrary function from)							
	$z = f(x^2 + y^2)$	7M	CO3	L3					
	OR Calua ()								
6. a) b)	Solve $x(y-z)p + y(z-x)q = z(x-y)$ Solve $p \tan x + q \tan y = \tan z$		CO3	L3					
6)	UNIT-IV	7 M	CO3	L3					
7. a)	Find $div \bar{f}$ where $\bar{f} = grad(x^3 + y^3 + z^3 - 3xyz)$	7M	CO4	L2					
b)	If $\overline{f} = (x+3y)\overline{i} + (y-2z)\overline{j} + (x+pz)\overline{k}$ is solenoidal, then find p.		CO4	L2					
	OR								
8.	Prove that $r^n \overline{r}$ is solenoidal if $n = -3$.	14M	CO4	L2					
_									
9.	Verify Green's theorem in the plane for $\oint (3x^2 - 8y^2)dx + (4y - 6xy)dy$								
	where C is the region bounded by $y = \sqrt{x}$ and $y = x^2$ OR	14M	CO5	L3					
10.	Verify stokes theorem for the function $\overline{F} = x^2 \overline{i} + xy \overline{j}$ integrated around the square in the plane z=0 whose sides are along the lines x=0,y=0,x=a,y=a.		CO5	L3					

		Hall Ticket Number :						
			R-1	9				
	C		0000]			
I B.Tech. II Semester Supplementary Examinations February 2022								
		Electronic Devices and Circuits						
		(Common to EEE & ECE) Max. Marks: 70 Ti	me: 3	Hours				
		Answer any five full questions by choosing one question from each unit (5x14						
		*****			Blooms			
			Marks	CO	Level			
		UNIT-I						
1.	a)	What is meant by Q- point? What factors to be considered for selecting the Q-point?	7M	1	1			
	b)	Define thermal runaway. How it can be avoided?	7M	1	1			
	2)	OR	7 101	•	•			
2.	a)	Explain with the circuit diagram the procedure for analysis of a collector to base						
	,	bias circuit.	7M	1	2			
	b)	Compare different Biasing Circuits with respect to a BJT.	7M	1	5			
		UNIT–II						
3.	a)	Sketch and Explain the Transfer Characteristics of P – channel JFET.	7M	2	2			
	b)	Distinguish between Gate bias & voltage divider bias for basic J-FET.	7M	2	3			
		OR						
4.	a)	Define various FET parameters and Obtain relation among them.	7M	2	1			
	b)	With neat sketches, Explain the Construction and Operation of P channel JFET.	7M	2	2			
_	、							
5.	a)	What is single stage transistor amplifier and how transistor will amplifies weak signal	7M	3	1			
	b)	Explain about the graphical demonstration of transistor amplifier with example	7M	3	2			
	~)	OR	,	Ũ	-			
6.	a)	Define Phase reversal. Explain the phenomenon of Phase reversal of CE						
		amplifier	7M	3	2			
	b)	Briefly explain about the practical circuit Transistor amplifier	7M	3	2			
-	、							
7.	a)	Elaborate the analysis of Common source Amplifier by using JFET with necessary calculations.	7M	4	3			
	b)	Discuss the analysis of Source Follower by using JFET with necessary		•	C			
	,	expressions.	7M	4	2			
		OR						
8.	a)	If properly biased, FET will act as a voltage controlled voltage source, justify.	7M	4	4			
	b)	Write the differences between Common Drain and common source Amplifiers.	7M	4	2			
0	-)	UNIT-V	-14	_				
9.	a) b)	Explain the working of Photo Transistor with neat diagram	7M	5	3			
	b)	What are the applications of Tunnel diode? OR	7M	5	2			
10.	a)	Write short notes on						
10.	aj	(i) PIN diode (ii) Photo diode	7M	5	2			
	b)	Explain the construction and operation of SCR with neat diagram. Derive						
		expression for anode current.	7M	5	3			

	F	Hall Ticket Number :]			Т
	С	ode: 19AC24T								J]		R-19		
I B.Tech. II Semester Supplementary Examinations February 2022																
					-			g Cl			-					
	١	Max. Marks: 70		(Co	mm	on f	o ee	E & I	=CE)			Time: 3	Hours	
	A	Answer any five full qu	vestior	ns by	y ch	ioosii	-	ne q *****	uesti	on fr	om e	each	n unit (5x14 = 70 l	Marks)	
							****	****						Marks	со	Blooms
						UNIT	-1	1								Level
1.	a)	How to find the stand	lard el	lectr				of zi	nc.					8M	CO1	L1
	b)	Write a short notes o	n i) ox	kidat	ion.	ii) re	ducti	on iii) eleo	ctroly	rtes					
		iv) salt bridge.				00								6M	CO1	L1
2.	a)	Describe the working	nrinc	inle	ofc	OR alom		ortro	de					7M	CO1	L3
2.	b)	Discuss the origin of	•	•				20110	uc.					7M		L3
	,	C C						7								
3	a)	Write any five basic o	harac	teris		UNIT		hatte	ries					7M	CO2	L1
0.	b)	List out the various a												7M		L1
	,					OR										
4.		Explain the construct	ion ar	nd w	orkir	ng pr	incip	le of	dry d	ell.				14M	CO2	L2
					1	JNIT	_111]								
5.	a)	Write short notes or	n the	pre				_ nulti-	cryst	alline	e and	d an	norpho	us		
		Silicon.							-					8M		L1
	b)	List out the various a	pplica	tions	s of			rgy.						6M	CO3	L1
6.		Give an overview on	the m	anut	facti	OR uring		notov	oltai	c cell				14M	CO3	L4
0.					14010	anng	0. p.	10101	ontar	0 001					000	
						JNIT-										
7.	a) L	What are elastomers	•				•								CO4	L1
	b)	List out the uses of th	iermo	setti	ng p	OIYIT OR		with e	exan	ipies	,			7M	CO4	L1
8.	a)	Explain the steps ir	nvolve	ed in	n co			n po	lyme	rizati	on	with	speci	fic		
		examples							-						CO4	L2
	b)	Describe the prepara	tion o	f Ny	lon-(6,6								4M	CO4	L3
					l	JNIT	-v]								
9.	a)	What are nanomateri	al? G	ive e				_						8M	CO5	L1
	b)	Write short notes on														
		i) nanoparticles, ii)) nanc	oclus	ster,		•	bon	nano	tube	(CN	T)		6M	CO5	L1
10.		Explain the working	a nrii	ncinl	le a	OR and		icatio	ons	of s	cann	ina	electr	on		
		microscope (SEM)	5 11				- 44			J. J			2.000		CO5	L2
							*	**								

		Hall Ticket Number :	R-1	9	
	С	ode: 19A522T		· •]
		I B.Tech. II Semester Supplementary Examinations Februa Programming through Python	ary 2022		
		(Common to EEE & ECE)			
	1	Max. Marks: 70	Time: 3	Hours	
	ŀ	Answer any five full questions by choosing one question from each unit (5	5x14 = 70 <i>1</i>	Marks)	
		*****			Blooms
			Marks	CO	Level
	-)				
1.	a)	What is computer science? Explain about the Essence of Computation Problem Solving.	al 7M	CO1	L1
	b)	Write about the process of computational problem solving	7M	CO1	L2
	0)	OR	, , , , ,	001	
2.	a)	Write a python program to find weather a given number is odd or even.	7M	CO1	L3
	b)	Illustrate infinite loop with an example	7M		L2
	,				
3.		Summarize in detail about function routine.	14M	CO2	L2
		OR			
4.	a)	Compare lists and tuples in Python	7M	CO2	L3
	b)	Describe the typical operations performed on lists	7M	CO2	L3
		UNIT–III			
5.	a)	Explain the use of modular design in software development	7M	CO3	L2
	b)	Explain the process of top-down design	7M	CO3	L2
		OR			
6.	a)	Distinguish different ways of using import statement	7M		L3
	b)	Differentiate between a text file and a binary file	7M	CO3	L3
_	、		-14	~ ~ (
1.	a)	Explain the concept of an object	7M	CO4	L2
	b)	Describe the use of object references	7M	CO4	L2
0		OR	714	004	1.5
0.	a) b)	Justify the need of automatic garbage collection in python	7M 7M	CO4	L5
	b)	Summarize the concept of memory allocation and deallocation.	7M	CO4	L5
q	a)	Define data structures and list out various types of data structures	7M	CO5	L2
0.	b)	Discuss about the common operations performed on data structures	7M	CO5	L2
	,	OR	7 111	000	L
10.		Examine abstract data type with its types along with the syntax used	14M	CO5	L3
		***			20