\square
Code: 19A324T
| B.Tech. || Semester Supplementary Examinations February 2022

Engineering Graphics \& Design

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

OR
2. The major and minor axes of an ellipse are 100 mm and 60 mm . Draw an ellipse by Arcs of circles method

14M CO1
L2

UNIT-II

3. Draw epicycloid of a circle of 40 mm diameter, which rolls outside on another circle of 120 mm diameter for one revolution clockwise. Draw a tangent and a normal to it at a point 95 mm from the centre of the directing circle

OR

4. Draw an involute for a circle of diameter 50 mm . Also draw a normal and tangent to the curve at a distance of 100 mm from the center of circle

14M CO2

UNIT-III

5. A point P is 15 mm above the H.P \& 20 mm in front the V.P. Another point Q is 25 mm behind the V.P \& 40 mm below the H.P. Draw the projections of these points by taking the distance between the end projectors as 70 mm . Also draw the line by joining their front and top views

OR

6. The top view of a 75 mm long line $A B$ measures 65 mm , while the length of its front view is 50 mm . Its one end A is in H.P. and 12 mm in front of the V.P. Draw the projections of $A B$ and determine its inclinations with the H.P. and the V.P

UNIT-IV

7. A hexagonal plate of side 30 mm is placed with a side on VP and surface inclined at 45° to VP and perpendicular to HP. Draw the projections

OR
8. A semi-circular lamina of 64 mm diameter has its straight edge in VP and inclined at an angle of 45° to HP. The surface of the lamina makes an angle of 30° with VP. Draw the projections

4M CO4
UNIT-V
9. Draw the projections of a hexagonal prism of base 25 mm side and axis 60 mm long, when it is resting on one of its corners of the base on HP. The axis of the solid is inclined at 45° to the HP
$14 \mathrm{M} \mathrm{CO5}$
\square
Code: 19A521T
| B.Tech. || Semester Supplementary Examinations February 2022

Python Programming

(Common to CE, ME \& CSE)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Applied Physics

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)
Marks CO

UNIT-I

1. a) What is interference? Mention the conditions to get interference.
b) Explain the formation of Newton's rings with experimental arrangement.

6M CO1

OR

2. a) Explain the interference in thin films by reflection
b) A parallel beam of light of $6000 \AA$ is incident on thin glass plate of refractive index 1.5 such that the angle of refraction into the plate is 50°. Find the least thickness of the glass plate which will appear dark by reflection.

4M CO1

UNIT-II

3. a) Explain the ferroelecrtricity and its properties

7M CO2
b) Describe the origin of magnetic moment in magnetic materials

7M CO2

OR

4. a) Define and derive local field in dielectrics.

10M CO2
b) A paramagnetic material has 10^{28} atomes per m^{3}. Its susceptibility at 350 K is 2.8×10^{-4}. Calculate susceptibility at 300 K .

4M CO2

UNIT-III

5. a) Define Attenuation and explain any three attenuation losses in optical fibers

9M CO3
b) Derive expression for numerical aperture of an optical fiber

5M CO3
OR
6. a) What is acceptance angle? Derive expression for acceptance angle of an optical fiber
b) Calculate the acceptance angle of given optical fiber if the refractive indices of core and cladding are 1.563 and 1.498 respectively.

10M CO3
$4 \mathrm{M} \quad \mathrm{CO} 3$

UNIT-IV

7. a) Explain classification of solids based on energy bands

8M CO4
b) Summarize applications of Semiconductors
$6 \mathrm{M} \mathrm{CO4}$

OR

8. a) Explain direct and indirect band gap semiconductors

8M CO4
b) Derive the expressions for intrinsic carrier concentration of intrinsic semiconductor

UNIT-V

9. a) State and explain Meissner effect in superconductors
$6 \mathrm{M} \mathrm{CO5}$
b) Distinguish type-I and type-II super conductors

8M CO5
OR
10. a) Explain construction and working of chemical vapor deposition method to prepare nanomaterials

8M CO5
L2,L3
b) Explain any two properties of nanomaterials
$6 \mathrm{M} \mathrm{CO5}$

Code: 19A221T

| B.Tech. || Semester Supplementary Examinations February 2022

Basic Electrical and Electronics Engineering

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
\qquad
Marks CO

UNIT-I

1. a) Define the following
i) Resistance
ii) Inductance
iii) capacitance
$6 \mathrm{M} \mathrm{CO1}$
b) Derive the expression for an equivalent resistance if any two resistors R1, R2 are connected in parallel?

7M CO1
L3

OR

2. a) Three inductors of $2 \mathrm{mh}, 5 \mathrm{mH}$ and 10 mH are connected in series. Find the equivalent inductance.

7M CO1
b) Three capacitors of $2 \mathrm{uF}, 5 \mathrm{uF}$ and 10 uF are connected in series. Find the equivalent capacitance.

UNIT-II

3. a) Classify and explain the different types of self-excited DC generators?

8M CO2
L2
b) Derive the torque expression of a DC motor

OR

4. a) Explain the operation of principle of DC generator.
b) List the applications of DC motors

UNIT-III

5. a) Explain the working principle of Transformer?

8 M CO 3
b) List out different types of losses present in transformer

6 M CO 3

OR

6. Describe the Brake test that can be performed on a $3-\varphi$ induction motor in detail.

14M CO3
L1

UNIT-IV

7. a) Define PNP and NPN transistors along with symbols?
b) Draw the full wave rectifier and discuss the operation of circuit.

7M CO4

OR

8. a) Discuss the operation of PN junction under forward bias condition with its characteristics.

7M CO4
b) Draw the Bridge rectifier and discuss the operation of circuit.

7M CO4
L3

UNIT-V

9. a) Explain about induction heating with relevant diagrams.

8M CO5
L2
b) List out the applications of Dielectric heating.
$6 \mathrm{M} \mathrm{CO5}$

OR

10. a) Draw the block diagram of CRO and discuss the operation.

7M CO5
L3
b) Discuss the voltage and current measurements of CRO.

Code: 19AC21T

| B.Tech. || Semester Supplementary Examinations February 2022

Differential Equations and Vector Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO

UNIT-I

1. a) Solve $\left(D^{2}+6 D+9\right) y=e^{-3 x}$
b) Solve $\left(D^{2}-1\right) y=3 x$

OR

2. Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=x e^{3 x}+\sin 2 x$

UNIT-II

3. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x$.

OR

4. Solve the simultaneous equations $\frac{d x}{d t}+2 y+\sin t=0, \frac{d y}{d t}-2 x-\cos t=0$ given that $x=0$ and $y=0$ when $t=0$.

14M CO2

UNIT-III

5. a) Form the partial differential equation by eliminating arbitrary constants a and b from $(x-a)^{2}+(y-b)^{2}=z^{2} \cot ^{2} \alpha$
b) Form the partial differential equation by eliminating arbitrary function from $z=f\left(x^{2}+y^{2}\right)$

7 M CO
L3

7M CO3

OR

6. a) Solve $x(y-z) p+y(z-x) q=z(x-y)$
b) Solve $p \tan x+q \tan y=\tan z$
$7 \mathrm{M} \mathrm{CO3}$
7 M CO

UNIT-IV

7. a) Find $\operatorname{div} \bar{f}$ where $\bar{f}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$
b) If $\bar{f}=(x+3 y) \bar{i}+(y-2 z) \bar{j}+(x+p z) \bar{k}$ is solenoidal, then find p.

7M CO4

OR

8. Prove that $r^{n} \bar{r}$ is solenoidal if $n=-3$.

UNIT-V

9. Verify Green's theorem in the plane for $\oint\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the region bounded by $y=\sqrt{x}$ and $y=x^{2}$

14M CO5

OR

10. Verify stokes theorem for the function $\bar{F}=x^{2} \bar{i}+x y \bar{j}$ integrated around the square in the plane $z=0$ whose sides are along the lines $x=0, y=0, x=a, y=a$.
