| B.Tech. || Semester Supplementary Examinations March 2021

Applied Physics

(Computer Science and Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What is interference? Explain how the interference take place in Newton's ring experiment.
b) Give the experimental set up to form Newton rings and determine the wavelength of incident monochromatic light by forming Newton rings.

10M CO1

OR

2. a) Differentiate the interference and diffraction phenomena.

4M CO1
b) Discuss the Fraunhoffer diffraction at a single slit. Obtain the condition for principal maximum and minimum.

10M CO1
L3

UNIT-II

3. a) Define is polarization in dielectrics. Discuss the frequency dependence of various polarization process in dielectrics.
7M CO2 L2
b) Explain ferroelectricity. List the important characteristics of ferroelectric materials.
$7 \mathrm{M} \mathrm{CO2}$

OR

4. a) What is hysteresis? Explain the hysteresis properties of ferromagnetic materials.
b) Explain the Weiss theory of ferromagnetism.
7M CO2 L2

UNIT-III

5. a) List differential and integral forms of Maxwell's equations for electromagnetic fields.
b) State poynting theorem. Explain how the poynting vector explains the energy flow.

7M CO3
6. a) Distinguish between step index and graded index fibers.
b) Sketch the block diagram of optic fiber communication system explain the function of each block.

8M CO3

UNIT-IV

7. a) What are extrinsic semiconductor? Explain the Hall effect in semiconductors. Obtain an expression for hall coefficient for an extrinsic semiconductor.
10M CO4 L2
b) The Hall coefficient of certain silicon specimen was found to be $7.35 \times 10^{-5} \mathrm{~m}^{3} \mathrm{C}^{-1}$ from 100 to 400 K . If the conductivity was found to be $200 \mathrm{~m}^{1-1}$. Calculate the density and mobility of the charge carrier.
4M CO4 L2

OR

8. a) Discuss the origin of energy band structure in solids. Classify the crystalline solids based on band theory.
8M CO4 L2
b) Derive an equation for the conductivity of an intrinsic semiconductor in terms of carrier concentration and carrier mobility.
$6 \mathrm{M} \mathrm{CO4}$

UNIT-V

9. a) State the following effects of superconductors (i) Temperature effect (ii) Magnetic effect. (iii) Current effect (iv) Isotope effect

8M CO5
b) What is Meissner effect? Explain.
$6 \mathrm{M} \mathrm{CO5}$

OR

10. a) Summarize the synthesis of nanomaterials by chemical vapor deposition method.

7M CO5
b) Explain the characterization technique of nanomaterial using x-ray diffraction technique.
\square
Code: 19A221T
| B.Tech. || Semester Supplementary Examinations March 2021

Basic Electrical and Electronics Engineering

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find the equivalent resistance of the circuit shown below.

b) For the circuit of figure shown below, calculate (i) the current drawn from the source, (ii) the potential drop across 3 resistors, (iii) the current through 6 resistor, and (iv) the power dissipated by the 5 resistor.

7M CO1
7M CO1
2. a) In a series $\mathrm{R}-\mathrm{L}-\mathrm{C}$ circuit, $\mathrm{R}=4 \quad, \mathrm{XC}=6 \quad, \mathrm{XL}=8 \quad$. A voltage V is applied across the combination such that the series current is 2 A and it lags the system voltage by 20°.Assuming the system frequency to be 50 Hz , find the voltage drops across each element.

7M CO1
b) Three identical coils, each of resistance 5 and inductance 10 mH are connected (i) in star and (ii) in delta to a $400 \mathrm{~V}, 50 \mathrm{~Hz}, 3$-phase supply. Determine the total power dissipated in each case.

7M CO1
UNIT-II
7 M
3. a) Prove that the emf equation of dc machine is

$$
E_{g}=\left(\frac{\phi \cdot Z \cdot N \cdot P}{60 A}\right)
$$

b) How do you determine the efficiency of DC machine both as a generator and motor using Swinburne's Test? Explain

7M CO2
4. a) Explain the constructional aspects of DC machine with neat sketches.
b) Explain the working principal of DC motor with neat sketches.

UNIT-III

5. a) Explain the ideal transformer operation with necessary diagrams.
b) Explain the principle of working of Induction motor with necessary diagrams

OR

6. a) Define voltage regulation in Alternators. Explain EMF method to determine it for alternators.
b) How do you determine the efficiency of 3-phase Induction motor from Brake test? Explain with necessary diagrams.

UNIT-IV

7. a) What are P-type and n-type semiconductors? Draw and explain the V-I characteristics of a $p-n$ junction diode.
b) Draw the Clipper half wave rectifier and full wave rectifier. And explain them with necessary equations in detail.

OR

8. a) Compare between PNP and NPN transistors
b) Draw and explain the common-emitter transistor characteristics.

UNIT-V

9. a) Explain the concept of induction heating and also discuss about various industrial applications of induction heating.
b) Write about voltage, current and frequency measurement using CRO

OR

10. a) Draw the block diagram of a CRO and explain the functions of its various components?
7M CO4
b) Enumerate the applications of induction heating.

7M CO4
$7 \mathrm{M} \quad \mathrm{CO} 2$L2

$7 \mathrm{M} \quad \mathrm{CO} 2$ L2

7M CO2

L2

7M CO2 L2

7M CO2 L1

7M CO2 L2

7M CO3 L1

7M \quad CO3 \quad L4
$7 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 5$
7M CO3 L5

Code: 19AC21T

| B.Tech. || Semester Supplementary Examinations March 2021

Differential Equations and Vector Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) *********

Marks

UNIT-I

1. a) Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=x e^{3 x}+\sin 2 x$

7M
b) Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \sin x$

7M

OR

2. Using method of variation of parameters, solve
$\frac{d^{2} y}{d x^{2}}+y=x \sin x$

UNIT-II

3. Solve $(2 x+3)^{2} \frac{d^{2} y}{d x^{2}}-(2 x+3) \frac{d y}{d x}-12 y=6 x$

OR

4. An uncharged condenser of capacity C is charged by applying an e.m.f. $\frac{E \sin t}{\sqrt{L C}}$, through leads of self-inductance L and negligible resistance. Prove that at any time t , the charge on one of the plates is $\frac{E C}{2}\left\{\sin \frac{t}{\sqrt{L C}}-\frac{t}{\sqrt{L C}} \cos \frac{t}{\sqrt{L C}}\right\}$.

UNIT-III

5. a) Form the partial differential equation by eliminating the arbitrary constants a, b and c from $(x-a)^{2}+(y-b)^{2}+z^{2}=c^{2}$
b) Solve $2 x z-p x^{2}-2 q x y+p q=0$ by Charpit's method.

OR
6. a) Form the partial differential equation by eliminating the arbitrary function from $z=y^{2}+2 f\left(\frac{1}{x}+\log y\right)$
b) Solve by the method of separation of variables $\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y}$, given that $u(0, y)=8 e^{-3 y}$.

UNIT-IV

7. Prove that $\nabla^{2}\left(r^{n}\right)=n(n+1) r^{n-2}$

OR

8. a) What is the directional derivative of $\phi=x y^{2}+y z^{3}$ at the point $(2,-1,1)$ in the direction of the normal to the surface $x \log z-y^{2}=-4$ at $(-1,2,1)$.
b) Find the work done in moving a particle in the force field $\bar{F}=3 x^{2} \bar{i}+(2 x z-y) \bar{j}+z \bar{k}$, along the straight line from $(0,0,0)$ to $(2,1,3)$.

UNIT-V

9. Verify Green's theorem for $\int_{C}\left(x^{2} y d x+x^{2} d y\right)$ where C is the boundary described counter clockwise of triangle with vertices $(0,0),(1,0),(1,1)$.

OR
10. Verify Stoke's theorem for the vector field $\bar{F}=(2 x-y) \bar{i}-y z^{2} \bar{j}-y^{2} z \bar{k}$ over the upper half surface of $x^{2}+y^{2}+z^{2}=1$, bounded by its projection on the xyplane.

Code: 19A324T

| B.Tech. || Semester Supplementary Examinations March 2021
 Engineering Graphics \& Design
 (Computer Science and Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Construct a conic when the distance between its focus and its directrix is equal to 60 mm and its eccentricity is one. Name the curve. Draw a tangent at any point on the curve.

14 M CO 1 L3

OR

2. a) Divide a straight line $A B$ of 60 mm long into eight number of equal parts.
b) Describe a regular pentagon about a given circle of radius equal to 20 mm .
$7 \mathrm{M} \quad \mathrm{CO} 1$

L4

UNIT-I

3. Draw a hypocycloid having a generating circle of diameter 50 mm and directing circle of radius 10 mm . Also draw a normal and a tangent at any point M on the curve.

14 M CO 2
L3

OR

4. Draw an involute of a hexagon 30 mm side. Also draw a normal and a tangent at any point on the curve.

14 M CO 2
L3

UNIT-I

5. a) Draw the projections of a i) Point P is 30 mm above HP and 40 mm behind VP ii) Point Q is 40 mm below HP and 30 mm behind VP.
b) A line $A B 50 \mathrm{~mm}$ long is perpendicular to $V P$ and parallel to $H P$. Its end A is 20 mm in front of VP and the line is 40 mm above HP. Draw the projections of the line.

OR

6. A line $A B, 90 \mathrm{~mm}$ long, is inclined at 30° to the HP . Its end A is 12 mm above the H.P. and 20 mm in front of the VP. Its front view measures 65 mm . Draw the top view of $A B$ and determine its inclination with the V.P.
$14 \mathrm{M} \mathrm{CO} 3 \quad \mathrm{~L} 3$

UNIT-I

7. A rectangular plane ABCD inclined to HP by an angle 30°, its shorter edge being parallel to HP and inclined to VP by an angle 45°. Draw its projections.

OR

8. A semicircular plate of 80 mm diameter has its straight edge in the VP and inclined at 45° to the HP. The surface of the plate makes an angle of 30° with the VP. Draw its projections.

UNIT-I

9. Draw the projections of a cone, base 30 mm diameter and axis 50 mm long, resting on HP on a point of its base circle with the axis making an angle of 45° with HP and its top view making an angle of 50° with VP.

14 M CO 5
L3

OR

10. Study the isometric view of the Figure 1 and draw the front, top and right side views.

Figure 1

Hall Ticket Number :										

Code: 19A521T

R-19

I B.Tech. || Semester Supplementary Examinations March 2021
Python Programming
(Common to CE, ME \& CSE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

1. Examine the various control structures in python with suitable example

14M CO1

OR

2. a) Describe the following operation in tuples,
i) Maxima
ii) Minima
iii) Sum of two tuples
iv) Duplicate a tuple
v) Slicing operator
7M
CO1
b) Show how an input and output function is performed in python with an example.
7M
CO1

UNIT-II

3. a) Describe the syntax and rules involved in the return statement in python
$7 \mathrm{M} \mathrm{CO2}$
L1
b) What is the major advantage and disadvantages of sets over lists? Describe a Python program to demonstrate differences between normal and frozen set

OR

4. Examine the following a) Creating the List b) Accessing values in the Lists
c) Updating the Lists
d) Deleting the list Elements

14M
CO2
5. a) How to access characters of a string?

7M CO3
b) Define file handling. Illustrate with an example of closing a file.
$7 \mathrm{M} \mathrm{CO3}$

OR

6. a) Examine the importance of user - defined Exceptions
$7 \mathrm{M} \quad \mathrm{CO}$
b) Write a python program for reading text from a file

7M CO3
7. a) Show the importance of encapsulation in python. Explain with example.

7M CO4
b) List the companies which employ python and quote the areas in which python is used extensively nowadays.

7M CO4 L3

OR

8. Illustrate the concept of classes in python with
UNIT-V
9. Describe the concept of stack implementation using python list.

14M CO4

OR

10. Define Single linked list and examine (i) traversing (ii) searching operations with example program
