	F	all Ticket Number :														
	C	ode: 19AC22T]]	ļ		R-19		
		I B.Tech. II Sem	estei	r Su	pple	eme	nta	γEx	am	inat	ions	Ма	rch	2021		
					• •	oliec										
			Comp	oute	er Sc	ienc	e ar	nd Ei	ngin	eeri	ng)					
	Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)															
			y ene	05111	ig on		*****			acri	OT III	υx		70 14101103	1	
					UNI	T_I								Marks	СО	Blooms Level
1.	a)	What is interference? Ex	plain	how			eren	ce ta	ke p	lace	in No	ewtor	n's ri	ing		
		experiment.												4M	CO1	L2
	b)	Give the experimental set of incident monochromatic	•				•			ermin	e the	wave	elenç	gth 10M	CO1	L3
~	-)	Differentiate the interferen		ما ما:4		R										
2.	a) b)	Differentiate the interferer Discuss the Fraunhoffer				-				ain t	ha c	ondit	ion	4M for	CO1	L2
	0)	principal maximum and m			n ai	a 31	ngie	Siit.	ODI			onuit		10M	CO1	L3
					UNI											
3.	a)	Define is polarization in d polarization process in die			Discu	uss th	ne fre	quer	icy d	leper	Idenc	e of v	vario	ous 7M	CO2	L2
	b)	Explain ferroelectricity. List					terist	ics of	ferro	pelect	ric m	ateria	ls.	7M	CO2	L2
4.	a)	What is hysteresis? Explair	tha h	veta	-	R	ortiac	of for	roma	anat	ic ma	torial	2	7M	000	L2
ч.	a) b)	Explain the Weiss theory		-			1103		101116	agnet		tenait	5.	7M 7M	CO2 CO2	L2 L2
	2)													7101	002	L
5.	a)	List differential and integral f	orms c	of Ma	xwell	s equ	ation	s for e	electr	omag	netic	fields.		7M	CO3	L3
	b)	State poynting theorem. Ex	plain ł	now	-	-	ng ve	ctor e	xplai	ns th	e ene	rgy flo	ow.	7M	CO3	L2
6.	a)	Distinguish between step	index	and		R ed in	dex f	ihers						8M	CO3	L2
0.	b)	Sketch the block diagram			•					m ex	plain	the f	uncti		003	LZ
	,	of each block.	•						2		•			6M	CO3	L3
7	-)	M/hat and autrinaia agent	l						- 44 - 1	- 1 :		:				
7.	a)	What are extrinsic semi- Obtain an expression for											ucio	10M	CO4	L2
	b)	The Hall coefficient									fou			be		
		$7.35 \times 10^{-5} \text{ m}^{3}\text{C}^{-1}$ from 10 Calculate the density and							was	tound	d to b	e 200)m'	-'. 4M	CO4	L2
					С	R										
8.	a)	Discuss the origin of ener based on band theory.	gy bar	nd st	tructu	ire in	solic	s. Cl	assif	y the	crys	talline	e soli	ids 8M	CO4	L2
	b)	Derive an equation for th			•		intri	nsic	semi	cond	uctor	in te	erms	of		
		carrier concentration and	carrie	r mo										6M	CO4	L2
9.	a)	State the following effects	s of su	ipero	UNI ¹ condu		 ; (i)	emp	erati	ıre el	ffect	ii) M	aane	etic		
		effect. (iii) Current effect (•			()					(,		8M	CO5	L2
	b)	What is Meissner effect?	Explai	n.	_									6M	CO5	L2
10.	a)	OR Summarize the synthesis of nanomaterials by chemical vapor deposition method.					d. 7M	CO5	L2							
	b)	Explain the characteriza				-			-	-					005	LZ
	,	technique.							-	0		-		7M	CO5	L2
						**	***									

Hall Tick	et Number :													
Code: 19	DA221T	<u> </u>			.[1				<u> </u>	R	-19	
	I B.Tech. II S	emeste	r Suj	ople	eme	ntar	y Ex	ami	inati	ons	Marc	h 2021		
Basic Electrical and Electronics Engineering														
Max. M	arke: 70	(Com	pute	er Sci	ienc	e ar	nd Er	ngin	eerir	ng)		Time	3 Hou	Irc
	ver all five uni	its by cho	posing	g on	e qu	estio	n fro	m eo	ach i	unit (5 x 14			12
					****	****				·				Blooms
												Marks	CO	Level
1. a) Fir	nd the equivale	ent resista	ince o	UNI of the		uit she	own ł	helov	V					
1. uj 1.	ia ino oquivale						1		••					
			60 Q	X			~		Ω 0					
			00 22	X	-		~	- 12	50 22					
	8 V						-							
				X		Ω 0								
				N	7									
												7M	CO1	L3
	or the circuit of	•					.,							
	e source, (ii) t ough 6 resis	he potent stor, and (•					,	the resis	current stor			
u n	ough o real		iv) ui	c poi	veru	133146	R ₄	Jy th		1031	3101.			
		F	<u>i</u>		8	T	3Ω							
		4	ā 🖡	-(201	R ₅							
		, B			5Ω	3-23s	en P	8556						
		6	a 🗌			ز ک	R ₆							
							80							
				÷.	8									
				18				79 0				7M	CO1	L3
2. a) In	a series R-L-0		R – 4	O		6	XI -	- 8	Δ١	voltar	ne V is			
,	plied across th	-									-			
	gs the system	•	•			•	•	tem	frequ	iency	/ to be			
	Hz, find the vo	•						l 4		10		7M	CO1	L3
,	ree identical c nnected (i) in	-									mH are supply.			
	etermine the to								•		,	7M	CO1	L3
			1	UNIT										
,	ove that the er	200203-00-00-00-00-00-00-00-00-00-00-00-00-0	on of o	dc ma	achin	e is								
E	$E_g = \left(\frac{\phi.Z}{60}\right)$	$\frac{N.P}{N}$												
	° (60	(A)										7M	CO2	L2
,	ow do you dete			-			achin	e bot	h as	a gei	nerator	-7K A	000	
an	d motor using	Swindurn	esl	est? O	•	ain						7M	CO2	L2
				0									Doce 4	of 7
													Page 1	Uf Z

			Code: 19A221T					
4.	a)	Explain the constructional aspects of DC machine with neat sketches.	7M	CO2	L2			
	b)	Explain the working principal of DC motor with neat sketches.	7M	CO2	L2			
5.	a)	Explain the ideal transformer operation with necessary diagrams.	7M	CO2	L2			
	b)	Explain the principle of working of Induction motor with necessary diagrams	7M	CO2	L2			
		OR						
6.	a)	Define voltage regulation in Alternators. Explain EMF method to determine it for alternators.	7M	CO2	L1			
	b)	How do you determine the efficiency of 3-phase Induction motor from Brake test? Explain with necessary diagrams.	7M	CO2	L2			
7.	2)	UNIT-IV						
7.	a)	What are P-type and n-type semiconductors? Draw and explain the V-I characteristics of a p-n junction diode.	7M	CO3	L1			
	b)	Draw the Clipper half wave rectifier and full wave rectifier. And explain them with necessary equations in detail.	7M	CO3	L4			
		OR						
8.	a)	Compare between PNP and NPN transistors	7M	CO3	L5			
	b)	Draw and explain the common–emitter transistor characteristics.	7M	CO3	L5			
9.	a)	Explain the concept of induction heating and also discuss about various industrial applications of induction heating.	7M	CO4	L2			
	b)	Write about voltage, current and frequency measurement using CRO	7M	CO4	L2			
	,	OR						
10.	a)	Draw the block diagram of a CRO and explain the functions of its						
	•	various components?	7M	CO4	L4			
	b)	Enumerate the applications of induction heating.	7M	CO4	L3			

	ł	Hall Ticket Number :												[
	Сс	ode: 19A324T		1			1	1	1			1	1	R	-19		
		I B.Tech. II S	Sem	este	er Su	pple	eme	enta	ry Ex	am	inat	ions	Mar	ch 202	21		
			E	ingi	nee	ering	g Gr	apł	nics	& D	esiç	gn					
		Max. Marks: 70	((Com	pute	er Sc	ienc	e ai	nd Ei	ngin	eerii	ng)		Tiroo	e: 3 Hc		
		Answer all five un	its by	/ cha	oosin	g on	•	estic		m eo	ach	unit	(5x1			0015	
															Marks	со	Blooms Level
					i.	UNIT											
1.		Construct a conic whe											•				
		mm and its eccentrici curve.	19 15	une.	Indiii	eine	Curv	e. Di	aw a	lang		at an	y poin		14M	CO 1	L3
						C	DR									001	
2.	a)	Divide a straight line A	AB of	60 n	nm lo	ong ir	nto ei	ght n	umbe	er of e	equal	part	S.		7M	CO 1	L4
	b)	Describe a regular pe	ntage	on ab	out a	a give	en cir	cle o	f radi	us ec	jual t	o 20	mm.		7M	CO 1	L3
_						UNIT		<u> </u>									
3.		Draw a hypocycloid ha of radius 10 mm. Also	-	-		-								-	14M	CO 2	L3
		or radius to min. Also	ulav	wan	UIIIC		DR	iyen	נמנמ	ny pe				ve.		002	LU
4.		Draw an involute of a	hexa	gon (30 m			so dr	aw a	norm	al ar	nd a t	angen	t at any			
		point on the curve.						-1							14M	CO 2	L3
_	、				i.			<u> </u>									
5.	a)	Draw the projections ii) Point Q is 40 mm b								HP a	and 4	10 m	m ber	nind VP	7M	CO 3	L3
	b)	A line AB 50 mm long	g is p	erper	ndicu	lar to	VP a	and p	aralle	el to l	HP. I	ts en	d A is	20 mm			
		in front of VP and the	line i	s 40	mm			. Dra	w the	proj	ectio	ns of	the lir	ie.	7M	CO 3	L3
6.		A line AB, 90 mm lor	na io	incli	nod r		DR		D Ito	and	∧ ic	10 n	am ah	ova tha			
0.		H.P. and 20 mm in fro	•														
		of AB and determine i												I	14M	CO 3	L3
					l	UNIT	-1]									
7.		A rectangular plane A					-		•				•	e being			
		parallel to HP and inc	lined	to VI	Р бу		ngle 4 DR	45°. L	Jraw	its pr	oject	ions.			14M	CO 4	L3
8.		A semicircular plate c	of 80	mm (diam			s stra	aight	edge	in th	ie VF	and	inclined			
		at 45° to the HP. The	surfa	ace o	of the	plate	e mal	kes a	n ang	gle of	30°	with	the VF	P. Draw			
		its projections.						-1							14M	CO 4	L3
0		Descuthe masks the			i.												
9.		Draw the projections on HP on a point of its												•			
		its top view making ar						0 1110	g	arrar	igio (14M	CO 5	L3
			-				OR										
10.		Study the isometric vi	ew o	f the	Figu	re 1 a	and d	raw t	he fro	ont, to	op an	d rig	ht side	e views.			
					\sim	>	~										

14M CO 5 L3

	-: 10A 521T	R-	19	
Coa	L = 19A521T I B.Tech. II Semester Supplementary Examinations March	2021		
	Python Programming	2021		
	(Common to CE, ME & CSE)			
Ma		Time:	3 Hoi	Jrs
	Answer all five units by choosing one question from each unit (5 x 14 =	70 Ma	rks)	
	*****			Diag
		Marks	CO	Bloc Lev
	UNIT–I			
1.	Examine the various control structures in python with suitable examples	14M	CO1	
	OR			
2. a)	Describe the following operation in tuples,			
	i) Maxima ii) Minima iii) Sum of two tuples iv) Duplicate a tuple			
	v) Slicing operator	7M	CO1	
b)	Show how an input and output function is performed in python with an example.	7M	CO1	
	UNIT–II			
3. a)	Describe the syntax and rules involved in the return statement in python	7M	CO2	
b)	What is the major advantage and disadvantages of sets over lists? Describe			
	a Python program to demonstrate differences between normal and frozen	714		
	set	7M	CO2	
4	OR			
4.	Examine the following a) Creating the List b) Accessing values in the Lists c) Updating the Lists d) Deleting the list Elements	14M	CO2	
			002	
5. a)	How to access characters of a string?	7M	CO3	
,	Define file handling. Illustrate with an example of closing a file.		CO3	
2)	OR		000	
6. a)	Examine the importance of user – defined Exceptions	7M	CO3	
b)	Write a python program for reading text from a file	7M	CO3	
0)		7 101	003	
7. a)	Show the importance of encapsulation in python. Explain with example.	7M	CO4	
b)	List the companies which employ python and quote the areas in which			
	python is used extensively nowadays.	7M	CO4	
	OR			
8.	Illustrate the concept of classes in python with suitable program.	14M	CO4	
	UNIT-V			
9.	Describe the concept of stack implementation using python list.	14M	CO5	
	OR			
0	Define Single linked list and examine (i) traversing (ii) searching operations			
0.				