Hall Ticket Number :

R-19

Code: 19A221T

| B.Tech. || Semester Supplementary Examinations April 2023
Basic Electrical and Electronics Engineering
(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO BL
UNIT-I

1. Determine the equivalent resistance between A and B of the network shown below.

14M CO1 L3
2. a) Find the equivalent Resistance across the terminals $X-Y$ for the circuit shown below?

b) Two resistances 2 and 4 are connected in series across a supply voltage of 25 Volts. Calculate voltage across each resister

8M CO1 L3
6 M CO1 L3

UNIT-II

3. A 4-pole, lap wound, DC generator has a useful flux of 0.07 wb per pole. Calculate the generated emf, when it is rotated at a speed of 900 rpm with the help of prime mover. Armature consists of 440 numbers of conductors. Also calculate the generated emf. If lap wound armature is replaced by wave wound armature.

OR
4. a) Classify and explain the different types of self-excited DC generators?

14M CO2 L3
b) Derive the torque expression of a DC motor

8M CO2 L2

UNIT-III
5. Draw the constructional diagram of an Alternator and discuss the principle of operation.

14 M CO3 L3
OR
6. a) Explain the working principle of Transformer?

8M CO3 L2
b) List out different types of losses present in transformer
$6 \mathrm{M} \mathrm{CO3} \mathrm{L1}$

UNIT-IV

7. Describe about operation of NPN transistor in terms of CE configuration with necessary diagram.

14M CO4 L1
8. a) Define PNP and NPN transistors along with symbols?
b) Draw the full wave rectifier and discuss the operation of circuit.

7M CO4 L1

UNIT-V

9. a) Explain about dielectric heating with relevant diagrams.
b) List out the applications of induction heating.

OR

10. a) Explain about induction heating with relevant diagrams.
b) List out the applications of Dielectric heating.

7M CO4 L3

8M CO5 L2
6 M CO5 L1

8M CO5 L2
$6 \mathrm{M} \mathrm{CO5}$ L1

Hall Ticket Number :

Code: 19AC21T

R-19

| B.Tech. || Semester Supplementary Examinations April 2023

Differential Equations and Vector Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO
BL
UNIT-I

1. a) Solve $\left(D^{2}+5 D+6\right) y=e^{x}$
b) Solve $\left(D^{2}+4\right) y=\cos x$

OR

2. Solve $\frac{d^{2} y}{d x^{2}}+y=e^{-x}+e^{x} \sin x$

UNIT-II

3. Solve $(2 x-1)^{2} \frac{d^{2} y}{d x^{2}}+(2 x-1) \frac{d y}{d x}-2 y=8 x^{2}-2 x+3$

OR

4. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x^{2}$

14M CO2 L3

UNIT-III

5. Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$

14M CO3 L3
OR
6. a) Form the partial differential equations by eliminating arbitrary functions from $z=f(x+a t)+g(x-a t)$
b) Solve $p y z+q z x=x y$

7 M CO3 L3

UNIT-IV

7. a) Find grad f where $f=x^{3}+y^{3}+3 x y z$

7 M CO4 L2
b) Find the directional derivative of $\phi=x^{2}-2 y^{2}+4 z^{2}$ at $(1,1,-1)$ in the direction of $2 \bar{i}+\bar{j}-\bar{k}$.

7M CO4 L2

OR

8. Prove that $r^{n} \bar{r}$ is solenoidal if $n=-3$.

14M CO4 L2

UNIT-V

9. Using Green's theorem evaluate $\oint_{C}\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$, where C is the closed curve of the region bounded by $y=x^{2}$ and $y^{2}=x$.

14M CO5 L3

OR

10. Verify stokes theorem for the function $\bar{F}=x^{2} \bar{i}+x y \bar{j}$ integrated around the square in the plane $\mathrm{z}=0$ whose sides are along the lines $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}$.
| B.Tech. || Semester Supplementary Examinations April 2023

Engineering Graphics \& Design
 (Computer Science and Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

1. Construct a regular Hexagon by General Method, given the length of its side is 50 mm
2. The major and minor axes of an ellipse are 120 mm and 80 mm . Draw an ellipse by Concentric Circles method
```
14M CO1
3. Draw epicycloid of a circle of 40 mm diameter, which rolls outside on another circle of 120 mm diameter for one revolution clockwise. Draw a tangent and a normal to it at a point 95 mm from the centre of the directing circle

\section*{OR}
4. A circle of diameter 30 mm rolls on a flat surface without slipping. Trace the path of a point lying on its circumference for one \& a half revolution of the circle.

14M CO2

\section*{UNIT-III}
5. A line \(A B\) has its end \(A 20 \mathrm{~mm}\) above H.P. and 25 mm in front of V.P. The other end \(B\) is 45 mm above H.P. and 55 mm in front of V.P. The distance between the end projectors is 60 mm . Draw its projections and also find the true length and true inclination of the line with H.P and V.P

\section*{OR}
6. A 100 mm long line is parallel to and 40 mm above the H.P. Its two ends are 25 mm and 50 mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P

14M CO3 L3

\section*{UNIT-IV}
7. A square ABCD of 40 mm side has a corner on the HP and 20 mm in front of the VP. All the sides of the squares are equally inclined to the HP and parallel to the VP. Draw its projections

14M CO4

\section*{OR}
8. A regular pentagon of 25 mm side has one side on the ground. Its plane is inclined at \(45^{\circ}\) to the HP and perpendicular to the VP. Draw its projections

14M CO4 L3

\section*{UNIT-V}
9. a) Draw the projections of a cone of base 30 mm diameter and axis 50 mm long, when it is resting on HP on its base

7 M CO5 L3
b) Draw the projections of a cylinder of base 30 mm diameter and axis 50 mm long, when it is resting on HP on its base

7M CO5 L3

\section*{OR}
10. Draw the projections of a cone, base 75 mm diameter and axis 100 mm lying on the HP on one of its generators with the axis parallel to the VP
\(\square\)
Hall Ticket Number :

\section*{Code: 19A521T}

\section*{R-19}

\section*{| B.Tech. || Semester Supplementary Examinations April 2023}

\section*{Python Programming}
(Common to CE, ME and CSE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( \(5 \times 14=70\) Marks )

\section*{UNIT-I}

Marks CO BL
1. Discuss in detail about the following
a) Input error checking
b) multi-way selection

OR
2. a) List out arithmetic operators in python and illustrate them with examples
b) Describe and illustrate Boolean operators with examples.

\section*{UNIT-II}
3. Justify the use of list comprehensions in Python.

\section*{OR}
4. a) Summarize in detail about function routine.

7M CO2 L2
b) Compare lists and tuples in Python \(\quad 7 \mathrm{M} \quad \mathrm{CO} 2 \quad \mathrm{~L} 3\)

\section*{UNIT-III}
5. Explain the process of exception handling in detail.

14M CO3 L3
OR
6. a) Explain the use of modular design in software development
\(7 \mathrm{M} \mathrm{CO3} \mathrm{~L} 2\)
b) Write a python program to write some text into a file.
\(7 \mathrm{M} \mathrm{CO3} \mathrm{L2}\)

\section*{UNIT-IV}
7. Determine three fundamental features of object oriented programming \(\quad 14 \mathrm{M} \quad \mathrm{CO} 4 \quad \mathrm{~L} 3\)

\section*{OR}
8. a) Justify the need of automatic garbage collection in python

7M CO4 L5
b) Summarize the concept of memory allocation and de allocation.

7 M CO 4 L

\section*{UNIT-V}
9. Write an algorithm for Single Linked List-traversing and explain it with an example.

\section*{OR}
10. a) Define data structures and list out various types of data structures 7M CO5 L2
b) Discuss about the common operations performed on data structures \(\quad 7 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2\)
Hall Ticket Number :
Code: 19AC22T
R-19
| B.Tech. || Semester Supplementary Examinations April 2023
Applied Physics(Computer Science and Engineering)
Max. Marks: 70
Time: 3 HoursAnswer any five full questions by choosing one question from each unit ( \(5 \times 14=70\) Marks )
*********
UNIT-I
1. Describe the Fraunhofer diffraction due to single slit and derive the conditions toget maximum and minimum intensity positions.
14M
OR2. a) What is interference? Mention the conditions to get interference.b) Explain the formation of Newton's rings with experimental arrangement.
6M
\(8 \mathrm{M} \quad 1 \quad 2,3\)
UNIT-II
3. a) Explain the soft and hard magnetic materials ..... 6M 22
b) Explain the domain theory of ferromagnetism ..... 8M ..... 22
OR
4. a) Define the ionic polarization and derive the expression for ionic polarizability
b) Describe Frequency dependence of polarizability of dielectrics

\begin{tabular}{lrr}
8 M & 2 & 1,6 \\
6 M & 2 & 1
\end{tabular}
UNIT-III
5. Explain various types of optical fibers
OR
6. a) State and prove the Gauss theorem for divergence ..... 7M 3 1,3
b) Derive expression for propagation of electromagnetic wave in non-conducting medium 7M 3 ..... 2
UNIT-IV
7. a) Describe the drift and diffusion process in a semiconductor with relevant expressions ..... 10M \(4 \quad 1\)
b) The \(R_{H}\) of a specimen is \(3.66 \times 10^{-4} \mathrm{~m}^{3} \mathrm{c}^{-1}\). Its resistivity is \(8.93 \times 10^{-3}-\mathrm{m}\). Find \(\mu\) and \(n\). ..... \(4 \mathrm{M} \quad 4 \quad 3\)
OR
8. a) Explain classification of solids based on energy bands8M \(4 \quad 2\)
b) Summarize applications of Semiconductors ..... 6M 42
UNIT-V
9. a) Explain Ball-milling method to synthesis Nanomaterials ..... \(8 \mathrm{M} \quad 5\)
b) Explain the basic principles of Nanomaterials ..... \(6 \mathrm{M} \quad 5 \quad 2\)
OR
10. a) Describe BCS theory of superconductivity7M \(\quad 5\)2
b) Explain the working principle of SEM with neat diagram ..... \(7 \mathrm{M} \quad 5\)```

