Hall Ticket Number :			
	R-1	9	
Code: 19AC21T I B.Tech. II Semester Supplementary Examinations July/Aug Differential Equations and Vector Calculus (Common to All Branches)	ust 202	2	_
Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x	Time: 3 14 = 70 <i>h</i>		
UNIT-I	Marks	СО	Blooms Level
Solve $\frac{d^2y}{dx^2} + y = e^{-x} + e^x \sin x$ OR	14M	CO1	L3
Solve $(D^2 + 1)x = t \cos t$ given $x = 0, \frac{dx}{dt} = 0$ at $t = 0$.	14 M	CO1	L3
Solve $x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^2$	14M	CO2	L3
Solve $(2x+3)^2 \frac{d^2y}{dx^2} - (2x+3)\frac{dy}{dx} - 12y = 6x$	14M	CO2	L3
Solve $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$ OR	14M	CO3	L3
Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u \text{ where } u(x,0) = 6e^{-3x}$	14M	CO3	L3
	,		
formed by the lines $x = \pm 1$ and $y = \pm 1$.	14M	CO4	L2
Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (2,-1,2)	14M	CO4	L2
formed by the planes x=0, x=a, y=0,y=b, z=0,z=c. OR	14M	CO5	L3
Verify Green's theorem in the plane for $\int (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where	:		

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

C is the region bounded by x = 0, y = 0 and x + y = 1.

Page 1 of 1

L3

14M CO5

Hall Ticket Number :						

Code: 19A324T

R-19

I B.Tech. II Semester Supplementary Examinations July/August 2022

Engineering Graphics & Design

(Computer Science and Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)**Blooms** Marks CO Level UNIT-I Construct a hyperbola, when the distance of the focus from the directrix is 1. 65mm and eccentricity is 3/2. Also draw tangent and normal to the curve as a point 45mm from directrix CO1 L2 14M OR L2 2. a) Divide a straight line AB of length 70 mm, into 9 equal parts CO₁ 7M L2 b) Bisect a straight line AB of length 65 mm 7M CO1 UNIT-II Construct a cycloid having a generating circle diameter as 50mm for one 3. revolution clockwise. Draw a normal and tangent to a curve at a point 35mm above the base line 14M CO2 L2 OR 4. Draw an involute for a pentagon of side 20mm. Also draw a normal and tangent to the curve at a distance of 75mm from the center of pentagon 14M CO2 L2 UNIT-III 5. A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P L3 14M CO3 OR A line PQ, 50mm long is perpendicular to H.P. and 15mm in front of V.P. 6. The end P, nearer to H.P is 20mm above it. Draw the projections of a line L3 14M CO3 **UNIT-IV** 7. A square ABCD of 40mm side has a corner on the HP and 20mm in front of the VP. All the sides of the squares are equally inclined to the HP and parallel to the VP. Draw its projections L3 14M CO4 8. Draw the projections of a regular hexagon of 25mm side, having one of its sides in the HP and inclined at 60° to the VP and its surface making an angle of 45° with the HP 14M CO4 L3 UNIT-V 9. Draw the projections of a right circular cylinder diameter of base 30mm and height 60mm resting on HP on its base, such that the axis is parallel to VP and inclined at 300 to HP 14M CO5 L3 OR Draw the projections of a cone of base 30mm diameter and axis 50mm 10. a) long, when it is resting on HP on its base CO₅ L3 7M b) Draw the projections of a cylinder of base 30mm diameter and axis 50mm long, when it is resting on HP on its base 7M CO₅ L3

Hall Ticket Number :						R-19	
Code: 19A521T							—

I B.Tech. II Semester Supplementary Examinations July/August 2022

Python Programming

(Common to CE, ME & CSE)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

		Marks	СО	Blooms Level
	UNIT-I			
1. a)	Describe and illustrate Boolean operators with examples.	7M	CO1	L2
b)	Write a program using if statements in Python.	7M	CO1	L3
	OR			
2.	Difference between sequential, selection, and iterative control	14M	CO1	L4
	UNIT-II			
3.	Define set and illustrate set in Python with suitable example	14M	CO2	L2
4	OR			
4.	Define dictionary data type in python? Illustrate dictionary with suitable example.	1/11/	CO2	L3
	example.	14101	002	LS
	UNIT-III			
5. a)	Write a python program to write some text into a file.	7M	CO3	L2
b)	Discuss about string traversal in python	7M	CO3	L2
	OR			
6. a)	How to deal with text files in python?	7M	CO3	L3
b)	Write a python program to read the lines of a file.	7M	CO3	L3
	UNIT-IV			
7.	Illustrate encapsulation with suitable example.	14M	CO4	L3
	OR			
8. a)	Explain the difference between a reference and dereferenced value	7M	CO4	L3
b)	Infer about constructors in Python	7M	CO4	L4
	UNIT-V			
9.	What is stack? Demonstrate stack operations with the example.	14M	CO5	L3
	OR			
10.	Outline the concept of queue implementation using python list.	14M	CO5	L4

Hall Ticket Number :						

Code: 19AC22T

I B.Tech. II Semester Supplementary Examinations July/August 2022

Applied Physics

(Computer Science and Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

	F	**************************************	4 = 70 10	iarks j	
			Marks	со	Blooms Level
4	-\	UNIT-I			
1.	a)	What is Diffraction grating? Explain how the wavelength is determined by using grating.	8M	CO1	L1,L2
	b)	Write the engineering applications of diffraction	6M	CO1	L1,L2
	٠,	OR	OW	001	
2.	a)	Describe the formation of Newton's rings with necessary theory.	10M	CO1	L1
	b)	In a Newton's rings experiment, the diameter of the 5 th dark ring is 0.3 cm			
		and diameter of 25 th ring is 0.8 cm. If the radius curvature of the Plano cove			
		lens is 100 cm. Find the wavelength of the light is used.	4M	CO1	L3
•	,	UNIT-II			
3.	a)	Define the ionic polarization and derive the expression for ionic polarizability	8M	CO2	L1,L6
	b)	Describe Frequency dependence of polarizability of dielectrics	6M	CO2	L1
1	٥)	OR What is Electronic polarization? Derive the expression for electronic			
4.	a)	What is Electronic polarization? Derive the expression for electronic polarizability.	9M	CO2	L1,L6
	b)	Explain Clausius-Mossotti relation in dielectrics.	5M	CO2	L2
	,	UNIT-III	• • • • • • • • • • • • • • • • • • • •	002	
5.	a)	State and prove the Gauss theorem for divergence	7M	CO3	L1,L3
	b)	Derive expression for propagation of electromagnetic wave in non-			
		conducting medium	7M	CO3	L2
		OR			
6.	a)	State and prove the Stoke's theorem for curl	7M	CO3	L1,L3
	b)	Explain pointing theorem in electromagnetics	7M	CO3	L2
_	,	UNIT-IV			
7.	a)	Explain the formation of P-type and N-type semiconductors with suitable band diagrams	ΩM	CO4	L2,L3
	b)	Discuss the effect of temperature on charge carrier concentration in N-type	OIVI	CO4	LZ,L3
	,	semiconductor	6M	CO4	L2
		OR			
8.	a)	State and explain Hall effect in semiconductors and derive expression for	4014		
	b)	hall coefficient Write the applications of hall effect	10M		L1,L2
	D)	UNIT-V	4M	CO4	L1,L2
9.	a)	Define the following terms i) superconductivity ii) critical temperature			
	/	iii) critical magnetic field and iv) Nanomaterials	8M	CO5	L1
	b)	Mention the properties of superconductors	6M	CO5	L3
		OR			
10.		Describe the various types of superconductors ***	14M	CO5	L2
		de de de			

R-19

Hall Ticket Number :						

Code: 19A221T

R-19

I B.Tech. II Semester Supplementary Examinations July/August 2022

Basic Electrical and Electronics Engineering

(Computer Science and Engineering)

Max. Marks: 70

Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

			Marks	со	Blooms Level
		UNIT-I			
1.		Two resistors of 4 , 6 are connected in parallel. if the total current is 30A, find			
		the current through each resistor?	14M	CO1	L3
		OR			
2.		Derive the expression for star to delta transformation	14M	CO1	L3
		UNIT-II			
3.	a)	Derive the EMF equation of DC generator.	7M	CO2	L3
	b)	Explain brake test of DC motor.	7M	CO2	L2
		OR			
4.	a)	Describe the various methods of speed control of DC shunt motor.	7M	CO2	L3
	b)	A 4-pole lap wound d.c generator is running at 1500 rpm, flux is 7 mwb, number	-1.4	000	
		of slots is 52, conductors per slot is 20. Calculate the generated voltage.	/ IVI	CO2	L3
_	-1	UNIT-III	71.4	000	1.0
5.	a)	Explain the working principle of an alternator?	7M	CO3	L2
	b)	Explain the working principle of three phase induction motor with a neat sketch?	7M	CO3	L2
		OR			
6.		Discuss the Principle of operation of 1- Transformer with constructional			
		diagram.	14M	CO3	L3
		UNIT-IV			
7.	a)	Classify the diodes and draw the V-I characteristics of diode.	7M	CO4	L1
	b)	Mention the applications of PN junction diode?	7M	CO4	L3
		OR			
8.	a)	Explain the operation of Half wave rectifier with relevant diagrams.	7M	CO4	L2
	b)	Discuss the input and output characteristics of a transistor in CE configuration.	7M	CO4	L2
		UNIT-V			
9.	a)	Discuss the working of CRO with neat sketch.	8M	CO5	L2
	b)	Explain various applications of CRO.	6M	CO5	L2
		OR			
10.	a)	Discuss the principle of operation of dielectric heating with its advantages.	7M	CO5	L2
	b)	Mention the industrial applications of dielectric heating?	7M	CO5	L3
		ale ale			