| B.Tech. || Semester Supplementary Examinations August 2021

Applied Physics

(Computer Science and Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
UNIT-I

1. a) What is interference? Mention the conditions to get interference.
b) Explain the formation of Newton's rings with experimental arrangement.

OR

2. a) Explain the interference in thin films by reflection
b) A parallel beam of light of $6000 \AA$ is incident on thin glass plate of refractive index 1.5 such that the angle of refraction into the plate is 50°. Find the least thickness of the glass plate which will appear dark by reflection.

UNIT-II

3. a) Explain the ferroelecrtricity and its applications
b) Describe the origin of magnetic moment in magnetic materials 7M

OR
4. a) Define and derive local field in dielectrics. 10M
b) A paramagnetic material has 10^{28} atomes per m^{3}. Its susceptibility at 350 K is 2.8×10^{-4}. Calculate susceptibility at 300 K .4M

UNIT-III

5. a) Define Attenuation and explain attenuation losses in optical fibers
b) Derive expression for numerical aperture of an optical fiber 5 M

OR

6. a) What is acceptance angle? Derive expression for acceptance angle of an optical fiber 10M
b) Calculate the acceptance angle of given optical fiber if the refractive indices of core and cladding are 1.563 and 1.498 respectively.

UNIT-IV

7. a) Explain classification of solids based on energy bands
b) Summarize applications of Semiconductors 6M

OR

8. a) State and explain Hall effect in semiconductors and derive expression for hall coefficient 10 M
b) Write the applications of hall effect 4 M

UNIT-V

9. a) State and explain Meissner effect in superconductors
b) Mention the applications of superconductors

OR
10. a) Describe DC and AC Josephson effects in superconductors 8 M
b) Describe BCS theory of superconductivity 6 M
| B.Tech. || Semester Supplementary Examinations August 2021

Basic Electrical and Electronics Engineering

(Computer Science and Engineering)
Max. Marks: $70 \quad$ Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
UNIT-I

1. a) State the Ohm's law and explain with example.

Marks CO | Blooms |
| :---: |
| Level |

b) Find the total current passed through the circuit consisting of three resistors
connected in series across the supply of 20 V . Where $\mathrm{R} 1=10, \mathrm{R} 2=5$,
$\mathrm{R} 3=12$. Also find the current passed through individual resistances R 1 ,
R 2 and R 3 .
b) Find the total current passed through the circuit consisting of three resistors
connected in series across the supply of 20 V . Where $\mathrm{R} 1=10, \mathrm{R} 2=5$,
$\mathrm{R} 3=12$. Also find the current passed through individual resistances R 1 ,
R 2 and R 3 .
b) Find the total current passed through the circuit consisting of three resistors
connected in series across the supply of 20 V . Where $\mathrm{R} 1=10, \mathrm{R} 2=5$,
$\mathrm{R} 3=12$. Also find the current passed through individual resistances R 1 ,
R 2 and R 3 .
b) Find the total current passed through the circuit consisting of three resistors
connected in series across the supply of 20 V . Where $\mathrm{R} 1=10, \mathrm{R} 2=5$,
$\mathrm{R} 3=12$. Also find the current passed through individual resistances R 1 ,
R 2 and R 3 .

OR

2. a) Obtain the equivalent inductance of three parallel connected inductors of value 10 mH . b) Derive the expression for the equivalent inductance of series combination of three inductances L1, L2 and L3 respectively each.
7M CO1

UNIT-II

3. Draw the constructional diagram of DC machine and explain the main parts.

OR

4. a) Explain the operation \& principle of dc motors.
b) A 6 pole, lap wound armature has 840 conductors and flux per pole of 0.018 wb . Calculate the emf generated when the machine is running at 1500rpm.

UNIT-III

5. a) Derive the EMF equation of single-phase transformer.
b) A transformer supplies a load of 32 A at 415 Volts. If the primary voltage is 3320 volts, find the primary current, primary volt-ampere and secondary volt-ampere.
7M CO1 L3
7M CO1 L3
14M CO2
L3
8M CO2 L2
6M CO2 L3
8M CO3 L3
6M CO3 L3

OR

6. a) Discuss the principle of operation of 3 Induction motor.
b) What is voltage regulation? Explain about synchronous impedance method of finding regulation.
$7 \mathrm{M} \mathrm{CO3}$
7M CO3

UNIT-IV

7. a) What is PN junction diode? Draw the symbol of it? Explain the V-I characteristics of it?
7M CO4
b) Discuss the operation of NPN and PNP transistors
7 M CO

OR

8. Explain the operation of Full wave rectifier with relevant diagrams.
14M CO4

UNIT-V

9. a) Explain about dielectric heating with relevant diagrams.
8M CO5
b) List out the applications of induction heating.
$6 \mathrm{M} \mathrm{CO5}$
10. Draw the block diagram of CRO? Explain the working principle of CRT in detail?
14M CO5
| B.Tech. || Semester Supplementary Examinations August 2021

Differential Equations and Vector Calculus

(Common to All Branches)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

$$
* * * * * * * * *
$$

Marks CO

UNIT-I

1. a) Solve $\left(D^{2}+5 D+6\right) y=e^{x}$

7M CO1
b) Solve $\left(D^{2}+4\right) y=\cos x$

7M - CO1

OR

2. Solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$ by using method of variation of parameters.

UNIT-II

3. Solve $(2 x-1)^{2} \frac{d^{2} y}{d x^{2}}+(2 x-1) \frac{d y}{d x}-2 y=8 x^{2}-2 x+3$

OR

4. Solve $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=2 \sin [\log (1+x)]$

UNIT-III

5. a) Form the partial differential equations by eliminating arbitrary functions from $z=f(x+a t)+g(x-a t)$
b) Solve $p y z+q z x=x y$

7 M CO3

OR

6. Using the method of separation of variables, solve

$$
\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y} \text { where } u(0, y)=8 e^{-3 y}
$$

UNIT-IV

7. a) Find grad f where $f=x^{3}+y^{3}+3 x y z$
b) Find the directional derivative of $\phi=x^{2}-2 y^{2}+4 z^{2}$ at $(1,1,-1)$ in the direction of $2 \bar{i}+\bar{j}-\bar{k}$.

7M CO4
L2

OR

8. Prove that $\nabla^{2}\left(r^{n}\right)=n(n+1) r^{n-2}$

UNIT-V

9. Using Green's theorem evaluate $\oint_{C}\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$, where C is the closed curve of the region bounded by $y=x^{2}$ and $y^{2}=x$.

OR

10. Use Stoke's theorem to evaluate $\int_{C}[(x+y) d x+(2 x-z) d y+(y+z) d z]$ where C is the boundary of the triangle with vertices $(2,0,0),(0,3,0)$ and $(0,0,6)$.

Code: 19A324T

| B.Tech. || Semester Supplementary Examinations August 2021
Engineering Graphics \& Design
(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Construct a conic when the distance of its focus from its directrix is equal to 50 mm and its eccentricity is $2 / 3$. Name the curve, mark its major axis and minor axis. Draw a tangent at any point, P on the curve.

OR

2. a) Divide a straight line $P Q$ of 55 mm long into seven number of equal parts.
b) Inscribe a regular hexagon in a circle of radius 20 mm .

UNIT-II

3. Draw an epicycloid having a generating circle of diameter 50 mm and a directing curve of radius 100 mm . Also draw a normal and a tangent at any point M on the curve.

OR

4. Draw an involute of a circle 25 mm diameter. Also draw a normal and a tangent at any point on the curve.

UNIT-III

5. a) Draw the projections of a i) point A lying on HP and 25 mm in front of V.P. ii) point B lying on VP and 70 mm above HP.
b) A line AB 40 mm long is parallel to VP and inclined at an angle of 30° to HP. The end A is 15 mm above HP and 20 mm in front of VP. Draw the projections of the line.

OR

6. A top view of a 75 mm long line $A B$ measures 65 mm , while the length of its front view is 50 mm . Its one end A is in the H.P. and 12 mm in front of the V.P. Draw the projections of $A B$ and determine its inclination with H.P. and the V.P.

14 M CO 3
L3

UNIT-IV

7. A thin rectangular plate of sides $40 \mathrm{~mm} \times 60 \mathrm{~mm}$ has its shorter edge on the H.P. and inclined at 30° to the V.P. Draw the projections of the plate when its view from above is a square of 40 mm side.

OR

8. A circular plate of diameter 70 mm has the end P of the diameter $P Q$ in the H.P and the plane is inclined at 40° to H.P. Draw its projection when the top view of diameter $P Q$ is inclined at 45° to $X Y$ line.

14 M CO 4
L3
UNIT-V
9. A square prism with side of base 30 mm and axis 50 mm long has its axis inclined at 60° to HP on one of the edges of the base which is inclined at 45° to VP.

14 M CO 5
10. Study the isometric view of the Figure 1 and draw the front, top and right side views.

Figure 1
\square
Hall Ticket Number :
Code: 19A521T

R-19

| B.Tech. || Semester Supplementary Examinations August 2021

Python Programming

(Common to CE, ME \& CSE)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

			Marks	co	$\underset{\substack{\text { Blooms } \\ \text { Level }}}{ }$
		UNIT-I			
1. a)	Who invented python? Write	hat you know about python programming.	7M	$\mathrm{CO1}$	L2
	List out arithmetic operators in	python and illustrate them with examples	7M	CO1	L2
		OR			
2. a)	Write a program using while st	atements in Python	7M	$\mathrm{CO1}$	L3
	Explain about membership operators		7M	CO1	L2
		UNIT-II			
3.	What is a list in python? Explain about list in detail.		14M	CO 2	L2
	OR				
4. a)	Write a Python program using programmer-defined functions		7M	CO 2	L3
	Explain the concept of parameter passing for functions		7M	CO 2	L3
		UNIT-III			
5. a)	What is exception handling?		4M	CO 3	L2
	How to Catch and handle exceptions in Python		10M	CO 3	L2
OR					
6. a)	Relate local, global, and built-in namespaces in python.		7M	CO 3	L4
	List some string methods and explain them		7M	CO 3	L3
		UNIT-IV			
7. a)	What is object oriented programming? Explain about object oriented concepts.		7M	CO 4	L2
	Define class and explain it with suitable example		7M	CO4	L2
		OR			
8.	Write a Python class named Student with two attributes student_id, student_name. Add a new attribute student_class and display the entire attribute and their values of the class		14M	CO4	L5
		UNIT-V			
9.	What is stack? Demonstrate stack operations with the example.		14M	CO5	L3
	OR				
10.	Explain in detail about the built	in types for queue in python.	14M	CO5	L3

