		Hall Ticket Number :										
		R-19										
	C	Lode: 19AC22T I B.Tech. II Semester Supplementary Examinations August 2021										
	Applied Physics											
	(Computer Science and Engineering)											
Max. Marks: 70 Time: 3 Hours												
		Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks ********	;)									
		UNIT–I										
1.	a)	What is interference? Mention the conditions to get interference.	6M									
	b)	Explain the formation of Newton's rings with experimental arrangement.	8M									
0	-)	OR	4014									
2.	a) h)	Explain the interference in thin films by reflection A parallel beam of light of 6000Å is incident on thin glass plate of refractive index 1.5	10M									
	b)	such that the angle of refraction into the plate is 50°. Find the least thickness of the										
		glass plate which will appear dark by reflection.	4M									
		UNIT–II										
3.	a)	Explain the ferroelecrtricity and its applications	7M									
	b)	Describe the origin of magnetic moment in magnetic materials	7M									
4.	a)	OR Define and derive local field in dielectrics.	10M									
	b)	A paramagnetic material has 10 ²⁸ atomes per m ³ . Its susceptibility at 350 K is 2.8X10 ⁻⁴ .	10101									
	~)	Calculate susceptibility at 300 K.	4M									
		UNIT-III										
5.	a)	Define Attenuation and explain attenuation losses in optical fibers	9M									
	b)	Derive expression for numerical aperture of an optical fiber OR	5M									
6.	a)	What is acceptance angle? Derive expression for acceptance angle of an optical fiber	10M									
	b)	Calculate the acceptance angle of given optical fiber if the refractive indices of core and										
	,	cladding are 1.563 and 1.498 respectively.	4M									
		UNIT-IV										
7.	a)	Explain classification of solids based on energy bands	8M									
	b)	Summarize applications of Semiconductors	6M									
8.	a)	OR State and explain Hall effect in semiconductors and derive expression for hall coefficient	10M									
0.	b)	Write the applications of hall effect	4M									
	- /	••										
		UNIT-V										
9.	a)	State and explain Meissner effect in superconductors	7M									
	b)	Mention the applications of superconductors	7M									
4.0	、	OR Describe DC and AC Jaconhoon affects in superconductors	014									
10.	a) b)	Describe DC and AC Josephson effects in superconductors	8M GM									
	b)	Describe BCS theory of superconductivity ***	6M									

Hall Ticket Number : Code: 19A221T																R-	19	
	oae	B.Tech. II Se	eme	ester	- Sur	ople	mei	ntar	y Ex	ami	ina	tior	าร .	Aug	ust 2	2021		
		Basi				•								-				
• •	av	Marks: 70	(C	om	oute	er Sci	ienc	e ar	nd Er	ngin	eer	ing)		-	Timo	3 Hou	re
		er any five full qu	estic	ons b	y ch	oosir	ng or	ne qu	Jesti	on fr	om	ea	ch	unit (-
							****	*****										Bloc
						UN	IT 1	٦								Marks	CO	Lev
۱.	a)	State the Ohm's I	aw ai	nd ex	olair			_ nple.								7M	CO1	
	b)	Find the total curr			•			•		sistir	ng o	of th	ree	resis	tors			
	~,	connected in ser	ies a	cross	s the	sup	oly of	20	V. W	here	R1	=10),	R2=5	5,			
		R3=12 . Also fi R2 and R3.	nd th	ie cu	rrent	pase	sed t	hrou	gh in	divid	ual	resi	sta	nces	R1,	7M	CO1	
		RZ anu R3.				C	DR									7 171	COT	
2.	a)	Obtain the equiva	alent	indu	ctan		-	e pa	rallel	con	nect	ted	ind	luctor	s of			
		value 10mH.														7M	CO1	
	b)	Derive the expres				•					ser	ies	cor	nbina	tion	714	CO1	
		of three inductand	.62 L	I, LZ	anu	UNI			y eau							7 111	COT	
3.		Draw the construc	tional	diag	ram			hine	and e	xplai	in th	e m	ain	parts		14M	CO2	
							OR											
1.	a)	Explain the opera		•	•											8M	CO2	
	b)	A 6 pole, lap wo 0.018wb. Calcula											•	•				
		1500rpm.			in g		licu	WIICI		ma	51111		5 10		y at	6M	CO2	
						UNI	T-III											
5.	a)	Derive the EMF e	•		-	•						_				8M	CO3	
	b)	A transformer sup 3320 volts, find	•								•		•	-				
		volt-ampere.	uie p	, intra	iy cc		ı, prii	nary	VOIL	amp	CIC	and	1 3	econ	Jaiy	6M	CO3	
						C	DR											
6.	a)	Discuss the princ	iple o	of ope	eratio	n of :	3 In	ducti	on m	otor.						7M	CO3	
	b)	What is voltage r	•	ition?	, Exb	lain a	abou	t syn	chror	nous	imp	eda	ance	e met	hod	-14		
		of finding regulation	on.			UNI	τ_ι\/									<i>i</i> M	CO3	
7.	a)	What is PN jun	ction	dio	de?			syn	nbol	of i	t? E	Expl	lain	the	V-I			
	,	characteristics of	it?					-								7M	CO4	
	b)	Discuss the operation	ation	of NF	PN ai			ansis	tors							7M	CO4	
2		Explain the opera	tion	of Eu			DR	with	rolo	ant	diac	iron	20			4 4 1 4	004	
3.				JIIU	li wa	UNI		with	Telev	ant	ulay	Jian	15.			1410	CO4	
).	a)	Explain about die	lectri	c hea	ating			ant d	iagra	ms.						8M	CO5	
	b)	List out the applic			•				J							6M	CO5	
					_		DR					_						
).		Draw the block diag	gram (of CR	0? E	xplair	n the	vorkii	ng pri	nciple	e of (CRT	in ⁻	detail	?	14M	CO5	

Hal	Ticket Number :	D 4	•	7
Cod	e: 19AC21T	R-1	9	
	I B.Tech. II Semester Supplementary Examinations August 2 Differential Equations and Vector Calculus (Common to All Branches)	2021		
	. Marks: 70 ver any five full questions by choosing one question from each unit (5x14 *********		3 Hours Marks)	5
	UNIT-I	Marks	со	Blooms Level
1. a)	Solve $(D^2 + 5D + 6)y = e^x$	7M	CO1	L3
b)	Solve $(D^2 + 4)y = \cos x$	7M	CO1	L3
	OR			
2.	Solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$ by using method of variation of parameters.	14M	CO1	L3
3.	Solve $(2x-1)^2 \frac{d^2 y}{dx^2} + (2x-1)\frac{dy}{dx} - 2y = 8x^2 - 2x + 3$ OR	14M	CO2	L3
4.	Solve $(1+x)^2 \frac{d^2 y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin[\log(1+x)]$	14M	CO2	L3
5. a)	Form the partial differential equations by eliminating arbitrary functions from			
	z = f(x+at) + g(x-at)	7M	CO3	L3
b)	Solve $pyz + qzx = xy$ OR	7M	CO3	L
6.	Using the method of separation of variables, solve			
	$\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y} \text{ where } u(0, y) = 8e^{-3y}$	14M	CO3	L3
	UNIT-IV			
7. a)		7M	CO4	L2
b)	Find the directional derivative of $w = x^2 - 2y^2 + 4z^2$ at (1,1,-1) in the direction of $2\overline{i} + \overline{j} - \overline{k}$.			
	\mathbf{OR}	7M	CO4	L2
8.	Prove that $\nabla^2(r^n) = n(n+1)r^{n-2}$	14M	CO4	L2
9.	UNIT-V Using Green's theorem evaluate $\oint (2xy - x^2)dx + (x^2 + y^2)dy$, where C is			
	the closed curve of the region bounded by $y = x^2$ and $y^2 = x$. OR	14M	CO5	L3
0.	Use Stoke's theorem to evaluate $\int_{C} [(x+y)dx + (2x-z)dy + (y+z)dz]$			
	where C is the boundary of the triangle with vertices $(2, 0, 0)$, $(0, 3, 0)$ and $(0,0,6)$.	14M	CO5	L3
	****END***			

Page **1** of **1**

C		19	
	ode: 19A324T I B.Tech. II Semester Supplementary Examinations August 202	1	
	Engineering Graphics & Design	I	
	(Computer Science and Engineering)		
		: 3 Hc	ours
	Answer all five units by choosing one question from each unit ($5 \times 14 = 70 M$	arks)	
	******	Marila	00
	UNIT–I	Marks	CO
	Construct a conic when the distance of its focus from its directrix is equal to 50 mm		
	and its eccentricity is 2/3. Name the curve, mark its major axis and minor axis. Draw		
	a tangent at any point, P on the curve.	14M	CO 1
	OR		
a		07M	CO 1
b		07M	CO 1
	UNIT-II Draw an epicycloid having a generating circle of diameter 50 mm and a directing		
	curve of radius 100 mm. Also draw a normal and a tangent at any point M on the		
	curve.	14M	CO 2
	OR		
	Draw an involute of a circle 25 mm diameter. Also draw a normal and a tangent at		
	any point on the curve.	14M	CO 2
	UNIT–III		
а		0714	
	lying on VP and 70 mm above HP.	07M	CO 3
b	A line AB 40 mm long is parallel to VP and inclined at an angle of 30 ^o to HP. The end A is 15 mm above HP and 20 mm in front of VP. Draw the projections of the line.	07M	CO 3
	OR	07101	003
	A top view of a 75 mm long line AB measures 65 mm, while the length of its front		
	view is 50 mm. Its one end A is in the H.P. and 12 mm in front of the V.P. Draw the		
	projections of AB and determine its inclination with H.P. and the V.P.	14M	CO 3
	UNIT-IV		
	A thin rectangular plate of sides 40 mm x 60 mm has its shorter edge on the H.P. and inclined at 30° to the V.P. Draw the projections of the plate when its view from		
	above is a square of 40 mm side.	14M	CO 4
	OR		
	A circular plate of diameter 70 mm has the end P of the diameter PQ in the H.P and		
	the plane is inclined at 40° to H.P. Draw its projection when the top view of diameter	4 4 5 4	
	PQ is inclined at 45° to XY line.	14111	CO 4
	A square prism with side of base 30 mm and axis 50 mm long has its axis inclined at		
	60° to HP on one of the edges of the base which is inclined at 45° to VP.	14M	CO 5
	OR		
	Study the isometric view of the Figure 1 and draw the front, top and right side views.		

Figure 1 ***** 14M CO 5 L3

F	- Hall [·]	Ticket Number :			
			R- 1	9	
C	ode	L B.Tech. II Semester Supplementary Examinations August	2021		
		Python Programming	2021		
		(Common to CE, ME & CSE)			
		Marks: 70	Time: (
А	1500	rer any five full questions by choosing one question from each unit (5x1 ********	14 = 70	Marks)
			Marks	со	Blooms Level
		UNIT-I			2010
1.	a)	Who invented python? Write what you know about python programming.	7M	CO1	L2
	b)	List out arithmetic operators in python and illustrate them with examples	7M	CO1	L2
		OR			
2.	a)	Write a program using while statements in Python	7M	CO1	L3
	b)	Explain about membership operators	7M	CO1	L2
		UNIT-II			
3.		What is a list in python? Explain about list in detail.	14M	CO2	L2
		OR			
4.	a)	Write a Python program using programmer-defined functions	7M	CO2	L3
	b)	Explain the concept of parameter passing for functions	7M	CO2	L3
-	、		48.4	000	
5.	a) b)	What is exception handling?	4M	CO3 CO3	L2 L2
	b)	How to Catch and handle exceptions in Python OR	10M	003	LZ
6.	a)	Relate local, global, and built-in namespaces in python.	7M	CO3	L4
0.	a) b)	List some string methods and explain them	7M	CO3	L3
	5)		7 1 1 1	000	LU
		UNIT-IV			
7.	a)	What is object oriented programming? Explain about object oriented concepts.	7M	CO4	L2
	b)	Define class and explain it with suitable example	7M	CO4	L2
	,	OR			
8.		Write a Python class named Student with two attributes student_id,			
		student_name. Add a new attribute student_class and display the entire			
		attribute and their values of the class	14M	CO4	L5
•		UNIT-V	4 4 5 4	005	1.0
9.		What is stack? Demonstrate stack operations with the example.	14M	CO5	L3
10.		OR Explain in detail about the built in types for queue in python.	1/1	CO5	L3
10.			1-111	000	LJ