Code: 19AC21T

| B.Tech. || Semester Supplementary Examinations November 2023

Differential Equations and Vector Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Solve $\left(D^{2}+4\right) y=\cos x$

7M CO1 L3
b) Solve $\left(D^{2}+6 D+9\right) y=e^{-3 x}$

7M CO1 L3

OR

2. Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=x e^{3 x}+\sin 2 x$

UNIT-II

3. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x^{2}$
4. Solve $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=2 \sin [\log (1+x)]$

14M CO2 L3

UNIT-III

5. a) Form the partial differential equations by eliminating arbitrary functions from
$f\left(x^{2}+y^{2}, z-x y\right)=0$
b) Form the partial differential equation by eliminating arbitrary constants a and b from $z=a \log \left\{\frac{b(y-1)}{1-x}\right\}$

OR

OR

6. a) Form the partial differential equation by eliminating arbitrary function from $z=f\left(x^{2}+y^{2}\right)$
b) Solve $p y z+q z x=x y$

7 M CO3 L3
7 M CO3 L3

UNIT-IV

7. a) Find div \bar{f} where $\bar{f}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$

7M CO4 L2
b) Find grad f where $f=x^{3}+y^{3}+3 x y z$

7M CO4 L2

OR

8. Prove that $r^{n} \bar{r}$ is solenoidal if $n=-3$.

14 M CO4 L2

UNIT-V

9. Verify stokes theorem for the function $\bar{F}=x^{2} \bar{i}+x y \bar{j}$ integrated around the square in the plane $\mathrm{z}=0$ whose sides are along the lines $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}$.

14M CO5 L3

OR

10. Using Green's theorem evaluate $\oint_{C}\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$, where C is the closed curve of the region bounded by $y=x^{2}$ and $y^{2}=x$.

Code: 19A324T

R-19
| B.Tech. || Semester Supplementary Examinations November 2023
Engineering Graphics \& Design
(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Construct an ellipse, when the distance of the focus from the directrix is equal to 50 mm and eccentricity is $2 / 3$. Also draw tangent and normal to the curve at a point 40 mm from the directrix

14M CO1 L2
OR
2. The major and minor axes of an ellipse are 120 mm and 80 mm . Draw an ellipse by Concentric Circles method

14M CO1 L2

UNIT-II

3. Draw a hypocycloid of a circle of 40 mm diameter, which rolls inside another circle of 160 mm diameter, for one revolution counter clockwise. Draw a tangent \& a normal to it at a point 65mm from the centre of the directing circle $\quad 14 \mathrm{M} \quad \mathrm{CO} 2 \quad \mathrm{~L} 2$

OR
4. Draw an involute for a circle of diameter 50 mm . Also draw a normal and tangent to the curve at a distance of 100 mm from the center of circle

14M CO2 L2
UNIT-III
5. A point is 50 mm from both the reference planes. Draw its projections in all possible positions

14M CO3 L3

OR

6. A line PQ, 50 mm long is perpendicular to H.P. and 15 mm in front of V.P. The end P, nearer to H.P is 20 mm above it. Draw the projections of a line

14M CO3 L3
UNIT-IV
7. A square ABCD of 40 mm side has a corner on the HP and 20 mm in front of the VP. All the sides of the squares are equally inclined to the HP and parallel to the VP. Draw its projections

14M CO4 L3

OR

8. Draw the projections of a regular hexagon of 25 mm side, having one of its sides in the HP and inclined at 60° to the VP and its surface making an angle of 45° with the HP

14M CO4 L3

UNIT-V

9. Draw the projections of a right circular cylinder diameter of base 30 mm and height 60 mm resting on HP on its base, such that the axis is parallel to VP and inclined at 30° to HP

14M CO5 L3
OR
10. Convert the following isometric view to orthographic views

\square

R-19

Code: 19AC22T

| B.Tech. || Semester Supplementary Examinations November 2023

Applied Physics

(Computer Science and Engineering)

Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

 Marks CO
UNIT-I

1. a) Explain the double refraction.

5M CO1
b) Describe the construction and working of Nicol's prism

9M CO1
OR
2. a) What is Diffraction grating? Explain how the wavelength is determined by
using grating.
b) Write the engineering applications of diffraction

> 8M CO1 1,2

6M CO11

UNIT-II
3. a) Describe the origin of magnetic moment in magnetic materials

7 M CO 2
1
b) Explain the hysteresis loss of ferromagnetic material

7 M CO2
OR
4. a) Explain the magnetic bubble memory in magnetic materials

10M CO2
$4 \mathrm{M} \quad \mathrm{CO} 2$3

UNIT-III

5. a) State and prove the Stoke's theorem for curl
b) Explain pointing theorem in electromagnetics

7 M CO
1,3

OR

6. a) Describe construction and working principle of optical fiber
b) Mention the applications of optical fiber in medicine.
$9 \mathrm{M} \mathrm{CO3}$
5 M CO
7 M CO2

UNIT-IV

7. a) State and explain Hall effect in semiconductors and derive expression for hall coefficient

10M CO4
1,2
b) Write the applications of hall effect 4M CO4

OR

8. a) Discuss the effect of temperature on charge carrier concentration in N -type semiconductor

7M CO4
2
b) Explain the conductivity of intrinsic semiconductor with relevant expressions

7 M CO
2

UNIT-V

9. Describe DC and AC Josephson effects in superconductors and mention its applications
$14 \mathrm{M} \operatorname{CO5} 2,3$

OR

10. a) Define the following terms i) superconductivity ii) critical temperature iii) critical magnetic field and iv) Nanomaterials
$8 \mathrm{M} \mathrm{CO5}$
$6 \mathrm{M} \mathrm{CO5}$
