_	~		R-19										
C	Coc	I B.Tech. II Semester Supplementary Examinations November Differential Equations and Vector Calculus	2023										
		(Common to All Branches)	<u>.</u>										
	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********												
		UNIT–I	Marks	со									
1.	a)	Solve $(D^2 + 4)y = \cos x$	7M	CO1									
	b)	Solve $(D^2 + 6D + 9)y = e^{-3x}$	7M	CO1									
		OR											
2.		Solve $\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x$	1 4 1 4	CO1									
			14M	COT									
3.		Solve $x^2 d^2 y$ and $dy + 6x + x^2$											
5.		Solve $x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^2$	14M	CO2									
		OR											
4.		Solve $(1+x)^2 \frac{d^2 y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin[\log(1+x)]$	4 4 5 4	<u> </u>									
			14M	CO2									
5.	a)	Form the partial differential equations by eliminating arbitrary functions from											
		$f(x^2+y^2,z-xy)=0$	7M	CO3									
	b)	Form the partial differential equation by eliminating arbitrary constants a and b											
		from $z = a \log \left\{ \frac{b(y-1)}{1-x} \right\}$											
		(1-x) OR	7M	CO3									
6.	a)	Form the partial differential equation by eliminating arbitrary function from											
	,	$z = f(x^2 + y^2)$	7M	CO3									
	b)	Solve $pyz + qzx = xy$											
-													
	a)	Find $div \bar{f}$ where $\bar{f} = grad(x^3 + y^3 + z^3 - 3xyz)$	7M	CO4									
	b)	Find grad f where $f = x^3 + y^3 + 3xyz$	7M	CO4									
8.		OR Prove that $u^n \overline{u}$ is solve oidalif $u = -2$											
0.		Prove that $r^n \overline{r}$ is solenoidal if $n = -3$.	14M	CO4									
9.		Verify stokes theorem for the function $\overline{F} = x^2 \overline{i} + xy \overline{j}$ integrated around the											
		square in the plane $z=0$ whose sides are along the lines $x=0,y=0,x=a,y=a$.	14M	CO5									
		OR											
0.		Using Green's theorem evaluate $\oint (2xy - x^2)dx + (x^2 + y^2)dy$, where C is the											
		C											

Important Note: 1. On completing your answers. Compulsorily draw diagonal cross line on the remaining blank pages.

		R-19	>	
C	Lode: 19A324T I B.Tech. II Semester Supplementary Examinations Novembe	r 2023		1
	Engineering Graphics & Design	1 2020		
	(Computer Science and Engineering)			
	Ti Answer any five full questions by choosing one question from each unit (5x14 *********	me: 3		
		Marks	СО	
4	UNIT-I			
1.	Construct an ellipse, when the distance of the focus from the directrix is equal to 50 mm and eccentricity is 2/3. Also draw tangent and normal to the curve at			
	a point 40mm from the directrix	14M	CO1	
2	OR			
2.	The major and minor axes of an ellipse are 120mm and 80mm. Draw an ellipse by Concentric Circles method	14M	CO1	
	UNIT–II			
3.	Draw a hypocycloid of a circle of 40mm diameter, which rolls inside another			
	circle of 160mm diameter, for one revolution counter clockwise. Draw a tangent			
	& a normal to it at a point 65mm from the centre of the directing circle	14M	CO2	
	OR			
4.	Draw an involute for a circle of diameter 50 mm. Also draw a normal and tangent to the curve at a distance of 100mm from the center of circle	14M	CO2	
			002	
5.	A point is 50mm from both the reference planes. Draw its projections in all			
	possible positions	14M	CO3	
	OR			
6.	A line PQ, 50mm long is perpendicular to H.P. and 15mm in front of V.P. The		000	
	end P, nearer to H.P is 20mm above it. Draw the projections of a line	14M	CO3	
7.	UNIT-IV A square ABCD of 40mm side has a corner on the HP and 20mm in front of the			
1.	VP. All the sides of the squares are equally inclined to the HP and parallel to			
	the VP. Draw its projections	14M	CO4	
	OR			
8.	Draw the projections of a regular hexagon of 25mm side, having one of its			
	sides in the HP and inclined at 60° to the VP and its surface making an angle of 45° with the HP	14M	CO4	
9.	Draw the projections of a right circular cylinder diameter of base 30mm and			
	height 60mm resting on HP on its base, such that the axis is parallel to VP and			
	inclined at 30° to HP	14M	CO5	
10	OR			
10.	Convert the following isometric view to orthographic views			
	20 20			

Important Note: 1. On completing your answers. Compulsorily draw diagonal cross line on the remaining blank pages.

14M CO5 L3

Х

25

2

	ſ	На	II Ticket Number :												_			_
																R-1		
		L B.Tech. II Semester Supplementary Examinations November 2023													J			
Applied Physics (Computer Science and Engineering)																		
tice.		Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)																
Ibract																Marks	со	BL
IS M8						l	JNIT	-1										
ied a	1.	a)	Explain the double													5M	CO1	2
treat		b)	č									9M	CO1	1				
ll be	•	,	OR a) What is Diffraction grating? Explain how the wavelength is determined by															
0, wi	2.	a)	using grating.	gratii	ng?	Expla	ain h	ow tr	ne wa	avele	engtr	i is d	eter	mineo	вр	8M	CO1	1,2
⊦8=4		b)	Write the engineeri	na ar	oilac	cation	s of	diffra	ctior	h						6M	CO1	.,_
. 32-		-,																
n eg	3.	a)	Describe the origin	of m	agn	etic n	nome	ent in	mag	gneti	c ma	teria	s			7M	CO2	1
writte		b)	Explain the hystere	esis lo	oss (of fer	roma	gnet	ic ma	ateria	al					7M	CO2	2
∧ suc							OR											
2. Any revealing of identification, appeal to evaluator and/or equations written eg. 32+8=40, will be treated as malpractice.	4.	a)	Explain the magnet	tic bu	bble	e mer	nory	in m	nagn	etic r	nate	rials				10M	CO2	2
		b)	A circular loop of o											crren	t of		000	0
			500mA.Calculate n	nagne	etic				ateo	a wit	n the)			4M	CO2	3
	5.	a)	State and prove the	sto	ko'c		NIT-		url							7M	CO3	1,3
	0.	a) State and prove the Stoke's theorem for curlb) Explain pointing theorem in electromagnetics									7M	CO3	2					
		OR														-		
	6.	a)	Describe construct	ion ai	nd v	vorkir		incipl	le of	optic	al fib	ber				9M	CO3	1
on, al		b)	Mention the applications of optical fiber in medicine.								5M	CO3	3					
icatic			UNIT-IV															
entif	7.	a)	State and explain H	Hall e	ffec	t in s	emic	ondu	ictors	s and	d der	ive e	xpre	ssior	for			
of id		L)	hall coefficient		: h a l		-1									10M	CO4	1,2
aling		b)	Write the applications of hall effect OR									4M	CO4	1,2				
reve	8.	a)	Discuss the effect of temperature on charge carrier concentration in															
Any	0.	a)	N-type semiconduc		lenn	perat			nary			001	CCIII			7M	CO4	2
2		b)	Explain the conduct	ivity c	of int	trinsic	sem	nicono	ducto	or witl	h rele	evant	exp	ressic	ons	7M	CO4	2
						U	VIT-V	V										
	9.		Describe DC and A	AC Jo	bsep	ohson	effe	ects ir	n sup	berco	ondu	ctors	and	men	tion			
			its applications				• •									14M	CO5	2,3
	10	\sim	Dofine the fallowing	og 4-	rme	, i) -	OR		lu oti-	<i>it.</i> :	i) or	itical	tor	nore	h			
	10.	a)	Define the followini iii) critical magnetic	•			•			•	i) Cr	ncal	ien	ipera	ure	8M	CO5	1
		b)	Mention the proper													6M	CO5	3
		,				•			**									