Hall Ticket Number : \square
Code: 19A324T

R-19

| B.Tech. || Semester Supplementary Examinations December 2022

Engineering Graphics \& Design

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. Construct a parabola, when the distance of the focus from the directrix is 50 mm . Also draw tangent on normal to the curve at a point 35 mm from the directrix
14M CO1 L2

OR

2. a) Divide a straight line $A B$ of length 90 mm , into 9 equal parts
b) Bisect a straight line $A B$ of length 85 mm

UNIT-II

3. Construct a cycloid having a generating circle diameter as 50 mm for one revolution clockwise. Draw a normal and tangent to a curve at a point 35 mm above the base line

OR

4. Draw an involute for a circle of diameter 50 mm . Also draw a normal and tangent to the curve at a distance of 100 mm from the center of circle

14M CO2

UNIT-III

5. Draw the projections of the following points on the same ground line, keeping the projections 30 mm apart.
a. A, in the H.P \& 30 mm , behind the V.P
b. $B, 30 \mathrm{~mm}$ above the H.P \& 15 mm in front of the V.P.
c. C, in the V.P \& 50 mm above the H.P.
d. D, 30 mm below the H.P \& 35 mm behind the V.P.
e. E, 25 mm above the H.P \& 65 mm behind the V.P.
f. F, 45 mm below the H.P \& 35 mm in front of the V.P.
g. G, in both the H.P \& the V.P.

14M CO3
L3

OR

6. A point is 50 mm from both the reference planes. Draw its projections in all possible positions

UNIT-IV

7. A regular hexagonal lamina of 22 mm side, rests on one of its sides on HP. It is parallel to and 15 mm away from the VP. The plane is vertical. Draw its projections

OR

8. Draw the isometric view of a pentagonal pyramid with side of base 25 mm and axis 60 mm long. The pyramid is resting on its base on HP with an edge of the base parallel to VP.
e.

14M CO5 L4
OR
10. Draw the isometric view of the following figure.

14M CO5 L4

Code: 19A521T / 19A522T

| B.Tech. || Semester Supplementary Examinations December 2022

Python Programming / Programming through Python

(Common to CE, ME \& CSE) (Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

Marks CO BL

	UNIT-I		
1. a)	Write a python program to find weather a given number is odd or even.	7M	CO 1
	Who invented python? Write what you know about python programming.	7M	CO1
	OR		
2.	Write about operator precedence in detail	14M	CO 1
	UNIT-II		
3.	Define set and illustrate set in Python with suitable example	14M	CO 2
	OR		
4.	Write a python program for temperature conversion using functions	14M	CO 2
	UNIT-III		
5.	Write a python program to count the number of vowels in a string provided by the user.	14M	CO3
	OR		
6. a) b)	Explain the process of top-down design	7M	CO 3
	Differentiate between a text file and a binary file	7M	CO 3
	UNIT-IV		
7. a) b)	Define class and explain it with suitable example	7M	CO 4
	Explain the concept of an object	7M	CO 4
	OR		
8.	Write in detail about special methods in python	14M	CO 4
	UNIT-V		
9.10.	Define queue. Illustrate queue operations with the examples.	14M	CO 5
	OR		
	Draw and explain the operations on stack using liked list.	14M	CO 5

Hall Ticket Number :

Code: 19AC22T

R-19

| B.Tech. || Semester Supplementary Examinations December 2022
Applied Physics
(Computer Science and Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Distinguish Fraunhofer and Fresnel's diffraction

6M 1
b) Explain the function of quarter and half wave plates $\quad 8 \mathrm{M} \quad 1$

OR

2. a) Explain the double refraction.

5M 1
b) Describe the construction and working of Nicol's prism

9M 1

UNIT-II

3. a)
Explain the hysteresis loss of ferromagnetic material
b)
Distinguish the soft and hard magnetic materials
OR

OR

4.

Describe the classification of magnetic materials

UNIT-III				
5. a)	Describe construction and working principle of optical fiber	9 M	3	1
b)	Mention the applications of optical fiber in medicine.	5 M	3	3
	OR			
6.	Explain the Maxwell's equations for electromagnetic waves.	14 M	3	2

UNIT-IV

7. a) Explain the optical communication system with the help of block diagram and discuss the function of each block

9M 3
b) Write the applications of optical fibers in communication

5M 3

OR

8. a) Mention the applications of optical fiber in medicine.
b) Define Attenuation and explain any three attenuation losses in optical fibers
b)

UNIT-V

9. a) Explain the conductivity of intrinsic semiconductor with relevant expressions

7M 4
b) Distinguish the P-type and N -type semiconductors

7M 4

OR

10. a)	Derive the Einstein's relation for a semiconductor	7 M	4	6
b)	Distinguish the direct and indirect band gap semiconductors	7 M	4	2.4

Hall Ticket Number :

Code: 19A221T

R-19

| B.Tech. || Semester Supplementary Examinations December 2022

Basic Electrical and Electronics Engineering

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Three resistors of $3,4 \& 5$ respectively, are connected in parallel. What potential
difference must be applied to the group in order that total power of 100 W may be
absorbed?
b) State the Kirchhoff laws and explain.

OR

2. a) Define the following
i) Resistance
ii) Inductance
iii) capacitance
b) State the Ohm's law and explain with example.

6M $1 \begin{array}{ll}1\end{array}$
$8 \mathrm{M} \quad 1 \quad 1$

UNIT-II

3. a) Derive the EMF equation of DC generator.
b) Classify and explain the different types of self-excited DC generators?

OR

4. a) Explain the operation \& principle of dc motors.
b) A 4-pole lap wound d.c generator is running at 1500 rpm , flux is 7 mwb , number of slots is 52 , conductors per slot is 20 . Calculate the generated voltage.

7M 23

UNIT-III

5. Describe the tests that can be performed on a single-phase transformer in detail.

OR

6. a) Derive the EMF equation of single-phase transformer.
b) Discuss the principle of operation of 3 Induction motor.

UNIT-IV

7. a) Explain about the principle of operation of PNP transistor? Discuss how it is operated as an amplifier?
b) Discuss the operation of $\mathrm{P}-\mathrm{N}$ junction diode with applications.
7M $4 \quad 2$

OR

8. a) Draw the Bridge rectifier and discuss the operation of circuit.
b) Classify the diodes and draw the V-I characteristics of diode.

UNIT-V
9. a) Give a comparison between induction heating and dielectric heating
b) Mention the industrial applications of induction heating?

OR

10. Enumerate the applications of dielectric heating and induction heating.

Code: 19AC21T

| B.Tech. || Semester Supplementary Examinations December 2022

Differential Equations and Vector Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. Solve $\left(D^{2}+3 D+2\right) y=e^{-x}+x^{2}+\cos x$

14M CO1
OR
2. Solve $\frac{d^{2} y}{d x^{2}}+4 y=\sec 2 x$ by using method of variation of parameters.

UNIT-II
3. An uncharged condenser of capacity C is charged by applying an e.m.f $E \sin \left(\frac{t}{\sqrt{L C}}\right)$, through leads of self-inductance L and negligible resistance, prove that for any time t, the charge on one the plate is
$\frac{E C}{2}\left[\sin \left(\frac{t}{\sqrt{L C}}\right)-\frac{t}{\sqrt{L C}} \cos \left(\frac{t}{\sqrt{L C}}\right)\right]$.
4. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x$.

14 M CO 2 L 3

UNIT-III

5. Solve $\left(p^{2}+q^{2)}\right) y=q z$ by using Charpits method.

OR
14M CO3
6. Form the partial differential equation by eliminating arbitrary constants a and b from $(x-a)^{2}+(y-b)^{2}=z^{2} \cot ^{2} \alpha$

14 M CO
Form the partial differential equation by eliminating arbitrary function from $z=f\left(x^{2}+y^{2}\right)$

UNIT-IV

7. Find the work done by a force $\bar{F}=\left(x^{2}-y^{2}+x\right) \bar{i}-(2 x y+y) \bar{j}$ which moves a particle in xy -plane from $(0,0)$ to $(1,1)$ along the parabola $y^{2}=x$.
8. Show that the vector $\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-z x\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}$ is irrotational and find its scalar potential.

14M CO4

UNIT-V

9. Verify Green's theorem in the plane for $\int\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the region bounded by $y=x$ and $y=x^{2}$

14M CO5

OR

10. Use Divergence theorem to evaluate $\iint(x \bar{i}+y \bar{j}+z \bar{k}) \cdot \bar{n} \cdot d s$, where s is the surface bounded by the cone $x^{2}+y^{2}=z^{2}$ in the plane $z=4$.
