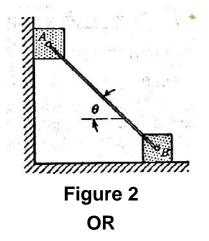
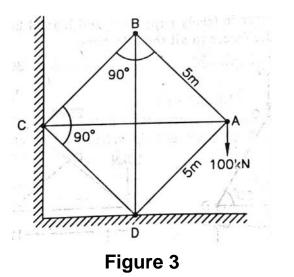
	Hall Ticket Number :				_			
						R-20)	
	Code: 20A326T	or Supplement	any Evami	nations	Eabrua	ny 2023		
	l B.Tech. II Semeste				rebiud	TY 2023		
	Ба	sic Mechanic (Civil Eng	-	enng				
	Max. Marks: 70		ineenng)			Time: 3	Hours	
		****	****			11110.0	110013	
	Note: 1. Question Paper consi 2. In Part-A, each quest	ion carries Two	mark.					
	3. Answer ALL the que							
		<u>PAR</u>						
		(Compulsor			(0)()	00	D	
1.	Answer ALL the following	-		(5 X 2	= 10M)	CO		
	a) Distinguish consumable and		electrodes.			CO		
	b) Distinguish drilling and milli	-				CO		
	c) Name the types of piston rir	•				CO		
	d) Define second law of therm	•				CO		
	e) Define earth moving machir	nes.				CO	5 L'	1
	Answer <i>five</i> questions by	PAR choosing one que		each unit	(5 x 12 =	60 Marks)	
			1			Marks	СО	BL
-		UNIT-I						
2.	Describe TIG welding process		lications.			12M	CO1	L2
3.	Explain OAW welding process	OR and write ite adv	antagos and	ldicadva	atagaa	1014	001	10
5.	Explain OAW welding process		antayes anu]	l'uisauvai	nayes.	I ZIVI	CO1	L2
4		UNIT-II				4014	000	
4.	Illustrate the construction and	•	nachine with	neat dia	gram.	12M	CO2	L3
5.	With neat diagram explain rolli	OR	vrite its annli	cations		12M	CO2	L2
0.	With heat diagram explain foil					12101	002	LZ
6.	Distinguish 4-Stroke and 2-Str					1014	CO3	L3
0.	Distinguish 4-Stroke and 2-Str	ORE TO ENGINES.				12111	003	LJ
7.	Name the thermodynamic proc		n 4-stroke C	Lengine	and expla	in		
	its working with neat sketch.			r origino (CO3	L2
	5	UNIT–IV]					
	Explain the vapor absorption re		m with neat	diagram		12M	CO4	L2
8.		onigorador oyoto	in manifold	alagiann		12101	001	
8.		OR						
8. 9.	Explain winter air-conditioning	OR system with neat	sketch			12M	CO4	L2
		system with neat	sketch			12M	CO4	L2
9.	Explain winter air-conditioning	system with neat]	scuss an	/ two			
9.		system with neat]	scuss an <u>y</u>	/ two.		CO4 CO5	
	Explain winter air-conditioning	system with neat UNIT–V nission systems a OR] and briefly dis		/ two.	12M		L2 L2 L2


Hall Ticket Number :			
	R-	20	
Code: 20AC21T I B.Tech. II Semester Supplementary Examinations Februa Differential Equations and Vector Calculus	ry 2023	}	
(Common to all Branches) Max. Marks: 70 ********	Time:	3 Hours	
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 			
PART-A			
(Compulsory question) 1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$		СО	BL
a) Find the P.I of $(D^2 - 2D + 4)y = e^x \cos x$		CO1	L2
b) Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$		CO2	L3
 c) Find the partial differential equation of all planes passing throug origin. 	h the	CO3	L2
d) Find $\nabla \left(\nabla . \frac{r}{r} \right)$		CO4	L2
e) State Stokes theorem.		CO5	L3
PART-B			
Answer <i>five</i> questions by choosing one question from each unit $(5 \times 12 =$	60 Mar Marks	ks) CO	BI
UNIT–I			
2. Solve $(D^2 - 4D + 4)y = 8x^2e^{2x}\sin 2x$.	12M	CO1	L
OR			
3. Solve, by the method of Variation of Parameters,			
$y'' - 2y' + y = e^x \log x$	12M	CO1	L3
UNIT–II			
4. In an L-C-R circuit, the charge q on a plate of a			
condenser is given by $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = E\sin pt$. The			
circuit is tuned to resonance so that $p^2 = 1/LC$. If initially the current i and the charge q be zero, show that, for small values of R/L , the current in the circuit at time t is			
given by $(Et/2L) \sin pt$.	12M	CO2	L

Code: 20AC21T

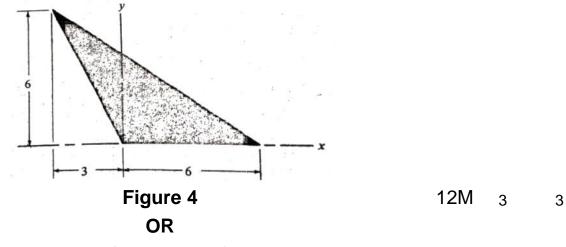

OR

5. Solve
$$(2x-1)^2 \frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} - 2y = 8x^2 - 2x + 3$$

[UNIT-III]
6. a) Form the partial differential equation by eliminating the arbitrary function from $\oint \left(\frac{y}{x}, x^2 + y^2 + z^2\right) = 0$.
b) Solve the partial differential equation $\frac{p}{x^2} + \frac{q}{y^2} = z$.
b) Solve the partial differential equation $\frac{p}{x^2} + \frac{q}{y^2} = z$.
c) OR
7. Use Separation of Variables to solve
 $4u_x + u_y = 3u$ with $u(0, y) = 3e^{-y} - e^{-5y}$.
12M CO3
L3
(UNIT-IV)
8. a) Find the values of a and b so that the surfaces
 $ax^2 - byz = (a+2)x$ and $4x^2y + z^3 = 4$
may intersect orthogonally at the point $(1, -1, 2)$.
b) Show that $\frac{r}{r^3}$ is solenoidal.
9. a) Find constants a, b, c so that the vector
 $\overline{A} = (x+2y+az)\overline{i} + (bx-3y-z)\overline{j} + (4x+cy+2z)\overline{k}$ is
irrotational. Also find ϕ such that $\overline{A} = \nabla \phi$
b) Prove that div curl $\overline{f} = 0$.
Con
10. Evaluate $\iint_{x} \overline{F}.\overline{n} ds$ where
 $\overline{F} = 12x^2y\overline{i} - 3yz\overline{j} + 2z \overline{k}$ and S is the portion of
the plane $x + y + z = 1$ included in the first octant.
12M CO5
11. Verify Green's theorem for
 $\iint_{c} (3x^2 - 8y^2) dx + (4y - 6xy) dy]$ where c is the region
bounded by $x = 0$, $y = 0$ and $x + y = 1$.
12M CO5
L5

Hall Ticket Number :	
Code: 20A323T	20
I B.Tech. II Semester Supplementary Examinations February 2023	}
Engineering Mechanics	
(Common to CE & ME) Max. Marks: 70 Time:	3 Hours
******	0110013
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark.	
3. Answer ALL the questions in Part-A and Part-B	
<u>PART-A</u> (Compulsory question)	
1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$	CO BL
a) What is meant by composition and resolution of forces?	1 1
b) What is the difference between coefficients of static and kinetic friction?	2 2
c) What do you mean by first moment of area and second moment of area?	3 2
d) Write the equations of plane motion of a rigid body.	4 1
e) Define impulse and momentum. State impulse-momentum principle ir translation.	ך 5 1
PART-B	
Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$ Mar	ks)
	rks CO BL
 State and prove Varignon's theorem applied to concurrent forces. 	M 1
OR	
3. The force system shown in Figure 1 has a resultant of 200 N	
pointing up along the Y-axis. Compute the values of F and	
required to give this resultant. Assume the units of forces in	
Newtons.	
Y	
500	
240	
Figure 1 12	M 1
UNIT–II	
4. Two identical blocks A and B are connected by a rod and	
rest against vertical and horizontal planes, respectively, as	
shown in Figure 2. If sliding impends when $= 45^{\circ}$,	
determine the coefficient of friction μ , assuming it to be the	N /
same at both floor and wall. 12	M 2

5. Find the forces in all the members of the truss shown in Figure 3.



12M 2

3

6. Determine the centroid of the shaded triangular area shown in Figure 4 with respect to the given X and Y – axes. Assume the units in figure in meters.

UNIT-III

Calculate the moment of inertia I_{xx} of a homogeneous right circular cone with respect to an axis X through the vertex and parallel to the plane of the base.
 12M

12M 3 3

4

8

4

3

4

2

UNIT-IV

8. a) Define normal and tangential components of accelerations. Write the equations.

b) The pilot of an airplane A flying horizontally with constant speed v = 450 kmph at an elevation h = 600 m above a level plain wishes to bomb a target B on the ground (Figure 5). At what angle below the horizontal should he see the target at the instant of releasing the bomb in order to score a hit?

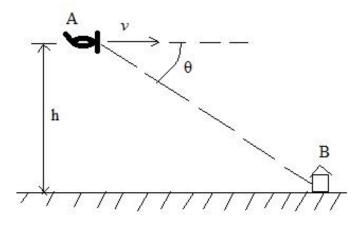
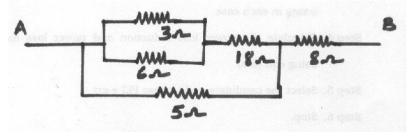


Figure 5

OR 9. a) What is instantaneous center of rotation of a rigid body making plane motion? Explain with an example. 6M 2 4 b) A locomotive runs along a straight level track with constant acceleration a = 0.2q. Find the total acceleration of a point at the top of the rim of a driver wheel of radius r = 1 m when the speed of the locomotive is 25 kmph. 6M 4 3 UNIT-V 10. a) State and prove Impulse – Momentum principle. 6M 5 2 b) A locomotive weighing 60 tons has a velocity of 15 kmph and backs into a freight car weighing 10 tons that is at rest on a level train track. After the coupling is made, with what velocity 'v' will the entire system continue to move? 6M 5 3 OR 11. A solid circular cylinder and a sphere are started from rest at the top of an inclined plane at the same time, and both roll without sliding down the plane. If, when the sphere reaches the bottom of the incline, the cylinder is 12 m behind it, what is the total length S of the incline? 12M 5 3

*** End ***


	На	all Ticket Number :			_
	Co	ode: 20AC24T	R-2	0	
	00	I B.Tech. II Semester Supplementary Examinations February	/ 2023		
		Engineering Physics			
	Mc	(Common to CE & ME) ax. Marks: 70	Time: 3	Hour	S
	No	 te: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 			
4	۸ ۵	(Compulsory question) $(5 \times 2 - 10M)$	CC	`	BL
т. а		ive examples of inertial and non-inertial frames of reference.	CC		L1
b	•	lassify A, B and C scan displays?	CC		L4
c	•	efine is Weiss domain theory of ferromagnetism?	CC		L1
d	•	tate and explain in brief the principle of communication through	CC		L2
u	,	otical fibers.			
е	•	ention two application of 'Hall effect' as a sensor'.	CC	5	L1
	,	PART-B			
		Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 6$	0 Marks	;)	
			Marks	CO	BL
~	-)	$\frac{\text{UNIT}-\text{I}}{2}$			
Ζ.	a)	Given = $2x^2 + 3y^3 - 4z$, determine grad, div(grad), curl(grad)	8M	004	10
	b)	What is Foucault's pendulum and where is it applied?		CO1 CO1	
	0)	OR	4101	COT	L3
2	a)	-			
5.	a)	Discuss Newton's laws of motion in rotating frame of reference.		CO1	L2
	b)	Explain the terms center of mass, torque and newton's		001	LZ
	0)	laws of motion in a frame of reference with constant			
		angular velocity.		CO1	L3
		UNIT–II			
4.	a)	Derive Sabine's formula using growth and decay method			
		and mention two methods to determine acoustic absorption			
		coefficient.	6M	CO2	2 L6
	b)	Analyze the method of magneto strictive ultrasonic			
		production.	6M	CO2	2 L4
		OR			

5.	a)	Enumerate the factors and concerned remedies for an acoustically good building.	4M	CO2	L1
	b)	What is pulse echo system? Explain how is it used in			
		transmission and reflection modes for nondestructive			
		testing.	8M	CO2	L4
•	、				
6.	a)	What is Polarisability and derive an expression for ionic			
		polarisability of an ionic substance.	6IVI	CO3	L6
	b)	What is magnetic moment and derive an expression for Bhor magneton.	6M	CO3	L6
		OR		003	LO
7	2)	What are the different types of polarization mechanisms?			
7.	a)	When radii two atoms are in the ratio 1:3 what is the			
		electronic polarization ratio of the two atoms and why.	8M	CO3	L4
	h)	Differentiate hard and soft magnetic materials along with a	om	000	64
	~)	hysteresis curve.	4M	CO3	L4
		UNIT-IV		000	
8.	a)	Deduce a relation between Einstein's coefficients.	6M	CO4	L6
	b)	Differentiate optical fibers based on the refractive index			
	,	profile	6M	CO4	L4
		OR			
9.	a)	Explain the terms population inversion, pumping mechanism			
		and justify why population inversion is required for lasing			
		action.	6M	CO4	L5
	b)	What is acceptance angle and evaluate what happens to			
		the numerical aperture value of the given fiber if is used in			
		water of refractive index 1.33 in comparison to using in air.	6IVI	CO4	L5
40	-)	UNIT-V			
10.	a)	What is a sensor and what are the basic components in a sensor?	бМ	005	14
	b)		OIVI	CO5	L1
	D)	Explain active and passive optical fiber sensors and device an optical fiber pressure sensor.	6M	CO5	L6
		OR	0111	000	LU
11.	a)	What is magneto striction and outline the working of			
	ω,	magneto strictive sensor.	6M	CO5	L4
	b)	Explain the construction and working of bimetallic strip			
	,	temperature sensor.	6M	CO5	L2
		*** End ***			

	Hall Ticket Number :											[
L	Code: 20A223T									<u>]</u>		R-20)		
	I B.Tech. II Semester Supplementary Examinations February 2023														
			ectric	•								19 2020			
			Comn						-		g				
	Max. Marks: 70	,				****				,		Time: 3	Time: 3 Hours		
	Note: 1. Question Pape	roon	viete of	two r				nd D	Part	B)					
	2. In Part-A, each			-				inu I	ai t-	D)					
	3. Answer ALL	-						t-B							
		•				RT-A									
											(Com	pulsory qu	estion)		
1.	Answer ALL the followin	g sho	rt answ	er que	estior	าร	(5	X 2 =	= 101	(N		CO	Blooms Level		
a)	State cork screw ru	ıle?										1	1		
b)	Draw the connection	on dia	agram	of S	winl	burn	e's	tesť	?			2	2		
c)	How the copper los	ss va	ries w	ith p	owe	r fac	ctor	in a	trar	nsfoi	rmer?	3	1		
d)	How P-N junction i	s forr	med ir	n a di	ode	?						4	1		
e)	Write the classification	tion (of inst	rume	entsí	?						5	1		
	Answer <i>five</i> questi	ons by	y choos	ing or		<u>RT-B</u> estio		m ea	ch u	nit (:	5 x 12 =	= 60 Marks)		

		Marks	СО	BL
	UNIT–I			
2. a)	Three resistors R1, R2 and R3 are connected in series across			
	a constant voltage V. The voltage across R1 is 20V. The			
	power consumed by R2 is 25 W, R3=20hms. Find the voltage			
	V if the current is 5A?	6M	1	3
b)	Discuss about static and dynamic induced EMF?	6M	1	2
	OR			

3. Calculate the effective resistance of the following combination of resistances and the voltage drops across each resistance, when a voltage of 60V is applied between points A and B as shown in fig.

12M 1 3

			Code: 204	A223T	
		UNIT–II			
4.	a)	Derive the EMF equation of DC Generator?	6M	2	2
	b)	Explain the Brake test of DC motor?	6M	2	2
		OR			
5.		Explain the speed control methods of DC motor?	12M	2	2
		UNIT–III			
6.	a)	Explain the Brake test on three-phase induction motor?	6M	3	2
	b)	Discuss the principle of operation of three-phase			
		transformer?	6M	3	2
		OR			
7.	a)				
		impedance method?	6M	3	2
	b)	Explain the calculation of efficiency and regulation of			
		transformer?	6M	3	2
-		UNIT-IV			
8.	a)	Explain the operation of diode half-wave rectifier?	6M	4	2
	b)	Describe the diffusion process that takes place at the p-n			
		junction, and explain the presence of depletion region?	6M	4	2
_		OR			
9.	a)	Define			
		i) active ii) saturation and cut-off region in a transistor?	6M	4	2
	b)	Sketch characteristics of transistor CE configuration?	6M	4	2
4.0	、		014		
10.		Explain the principle of cathode ray tube?	6M	5	2
	b)	Explain about different types of Fuses?	6M	5	2
		OR			
11.	a)				
		day, a 200 W refrigerator used 24 hours per day, and a			
		125 watt water pump used 8hours per day. How much electrical energy used for a month (30days)?	9M	5	G
	h)		3M	-	3
	b)	Discuss the applications of CRO? *** End ***	SIVI	5	2