\square
Code: 20AC21T
| B.Tech. || Semester Supplementary Examinations March 2022

Differential Equations and Vector Calculus
 (Common to All Branches)

Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ CO $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Find the particular integral of the equation $\frac{d y}{d t}+y=e^{2 t}+t$.
b) Solve the Euler's equation $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-8 y=0$.
c) Form a partial differential equation by eliminating f, from

$$
f\left(\mathrm{xy}+\mathrm{z}^{2}, x+y+z\right)=0
$$

d) Find div curl \vec{F} where $\vec{F}=x^{2} y \vec{i}+x z \vec{j}+2 y z \vec{k}$.
e) State Gauss's divergence theorem.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. Solve $(D-2)^{2} y=x^{2} \sin x+e^{2 x}+3$.

12M co1

OR

3. Solve the following equation by the method of variation of parameters $\left(D^{2}-2 D\right) y=e^{x} \sin x$.

UNIT-II

4. Solve $\left(x^{2} D^{2}+x D+1\right) y=\log x \sin (\log x)$. 12M CO2

OR

5. Solve $D^{2} x+y=\sin t ; x+D^{2} y=\cos t$. 12M coz

UNIT-III

6. a) Solve $x^{2} p^{2}+y^{2} q^{2}=z^{2}$
b) Solve $(m z-n y) p+(n x-l z) q=l y-m x$
7. Solve by the method of separation of variables

$$
2 x z_{x}-3 y z_{y}=0
$$

UNIT-IV

8. Find the directional derivative of
$\phi(x, y, z)=x^{2} y z+4 x z^{2}$
at $(1,-2,-1)$ in the direction of $2 \vec{i}-\vec{j}-2 \vec{k}$.
12M co4
OR
9. a) Show that the vector field given by
$\vec{A}=3 x^{2} y \vec{i}+\left(x^{3}-2 y z^{2}\right) \vec{j}+\left(3 z^{2}-2 y^{2} z\right) \vec{k}$ is
irrotational but not solenoidal. Also find its scalar potential $\phi(x, y, z)$

12M co4

UNIT-V

10. Verify Green's theorem for the scalar line integral of $\vec{F}=\left(x^{2}+y^{2}\right) \vec{i}-2 x y \vec{j}$ around the rectangle formed by the lines $x= \pm a, y=b$.

12M cos

OR

11. Evaluate $\iint_{s} \vec{F} \cdot \vec{n} d S$ where
$\vec{F}=\left(x+y^{2}\right) \vec{i}-(2 x) \vec{j}+2 y z \vec{k}$ and S is the surface of
the plane $2 x+y+2 z=6_{* * * \text { End } * * *}^{6}$ ine first octant
$12 \mathrm{M} \cos$

Code: 20A323T
| B.Tech. || Semester Supplementary Examinations March 2022

Engineering Mechanics

(Common to CE \& ME)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions
a) A 50 N force is to be resolved into components along line $a-a$ ' and $b-b$ ' as shown in the figure. If the component along $b-b^{\prime}$ is 30 N determine angle α.

b) A block of 250 N weight must be held against a wall as shown in figure by applying a force P normal to the contact surface. If the coefficient of friction between the surfaces is 0.3 , determine the minimum force required.

c) Define pappus theorems.
d) Establish the relationships between angular motion and linear motion.
e) Enunciate the work energy principle.

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. A boom supports two vertical loads F1 and F2 and is supported as shown in the figure. The cable CB can sustain a maximum load of 1500 N before it fails. Calculate the critical loads if $F_{1}=2 F_{2}$ and the magnitude of the reaction at pin A .

OR

3. Find the resultant of the system of forces shown in Figure.

UNIT-II

4. Determine the forces in the members $A B, A C$ and BD of the truss shown in figure.

12M 1
3

OR
5. Two blocks which are connected by a horizontal link $A B$ are supported on two rough planes as shown in figure. The coefficient of friction of block A is 0.4 . The angle of friction for the block B on the inclined plane is $\varnothing=20^{\circ}$. Find the smallest weight W of the block A for which equilibrium can exist.

UNIT-III
6. Find the moment of inertia about $X-X$ and $Y-Y$ axes as shown in figure.

12M 3

Code: 20A323T
OR
7. Find the centre of gravity of the given section shown in figure.

12M 3

UNIT-IV

8. A soldier fires a bullet with a velocity of $31.32 \mathrm{~m} / \mathrm{sec}$ at an angle of α upwards from the horizontal from his position on a hill to strike a target which is 100 m away and 50 m below his position. Find the angle of projection α. Find also the velocity with which the bullet strikes the object. $12 \mathrm{M} \quad 4$

OR

9. A train starting from rest, acceleration uniformly for 2 minutes, run at constant speed for 4 minutes. After this the train comes to stop with uniform retardation for 3 minutes and this covers a distance of 5 km . find (a) its constant speed, (b) its acceleration, and (c) its retardation.

UNIT-V

10. Determine the constant force P that will give the system of bodies as shown in figure, a velocity of $3 \mathrm{~m} / \mathrm{sec}$ after moving a distance of 4.5 m from the position of rest. Coefficient of friction at all contact points is 0.2. Assume pulley is frictionless.

12M 53

OR

11. Two blocks 40 kg and 24 kg are connected by inextensible strings and supported as shown in figure. Determine tension in the string and time taken by block 24 kg to attain a velocity of $2 \mathrm{~m} / \mathrm{sec}$ from rest. Consider pulley as frictionless and weightless. Take coefficient of friction between block 40 kg and plane as 0.25 .

Code: 20AC24T

| B.Tech. || Semester Supplementary Examinations March 2022
 Engineering Physics

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1.Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$)	CO	Blooms Level
a) Distinguish between torque and angular momentum.	CO 1	L4
b) Write any two causes of time of reverberation.	CO 2	L1
c) Define dielectric polarization.	CO 3	L1
d) Why LASER is high intense than ordinary light?	CO 4	L3
e) Mention various types of sensors.	CO5	L1

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

OR
5. a) Define magnetostriction in ultrasonics. $\quad 3 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 1$
b) Discuss production of ultrasonics by magnetostriction method. $\quad 9 \mathrm{M} \quad \mathrm{CO} 2$

UNIT-III
6. a) Explain various types of polarizations in dielectrics. $7 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2$
b) Mention the applications of dielectrics. $5 \mathrm{M} \quad \mathrm{CO} 3 \quad \mathrm{~L} 1$

OR
$\begin{array}{llll}\text { 7. a) Distinguish between hard and soft magnetic materials } & 7 \mathrm{M} & \cos & \mathrm{L} 4\end{array}$
b) List the applications of magnetic device applications $\quad 5 \mathrm{M} \quad \mathrm{CO} 3 \quad \mathrm{~L} 1$

UNIT-IV

8. a) What are the characteristics of a laser? $\quad 3 \mathrm{M}$ CO4 L1
b) Describe the construction and working of Ruby laser. $\quad 9 \mathrm{M} \quad \mathrm{co4} \quad \mathrm{~L} 2$

OR
9. a) Derive an expression for numerical aperture of an optical fiber. 9M co4 L4
b) An optical fiber has a refractive index of core 1.55 and cladding 1.50 .
Find its numerical aperture.

UNIT-V
10. a) Discuss about strain and pressure sensors.
b) What are their applications?

7M CO5 L2

OR

11. a) How a piezoelectric sensor works?	5 M	co5	L 1
b) Write a short note on pyroelectric detector.	7 M	$\mathrm{co5}$	L 1

\square
Code: 20A223T
| B.Tech. || Semester Supplementary Examinations March 2022

Basic Electrical and Electronics Engineering

(Common to CE, CSE and AI \& DS)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
 (Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) How the voltage is divided in a series circuit? CO1 L2
b) State the function of commutator in D.C. Generator?

CO2 L1
c) Mention the various losses occur in single phase transformer?

CO3 L1
d) What do you understand by Depletion region in a diode CO4 L1
e) What is meant by MCB

CO5 LI
PART-B
Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Explain the concept of series and parallel circuits

6M co1 L2
b) Determine the current in 3 resistor and voltage across the current source in the network shown in figure using mesh analysis.

6M co1 L3
3. a) State and explain the Faraday's law of electromagnetic induction?

6M co1
L1
b) A resistance of R ohms is connected in series with parallel circuit comprising of two resistors of 12 ohms and 28 ohms respectively. The total power dissipated in the circuit is 70 W when the applied voltage is 20 V . Calculate the value of R ?

UNIT-II

4. a) From the fundamentals, derive the EMF equation of DC generator.
b) What are the different types of DC motors? Explain with neat connection diagrams.

OR

5. a) How the back emf is generated in a DC motor? What is the significance of back emf?
b) A 6-pole lap wound DC generator has 600 conductors on its armature. Flux per pole is 0.02 Wb , speed is 1500 rpm . Calculate EMF generated. Also calculate EMF generated if the generator is wave wounded.

UNIT-III

6. a) Explain the principle of operation of 3-phase induction motor with neat sketch?
b) A single phase transformer has 400 primary and 1000 secondary turns. The net cross sectional area of the core is $60 \mathrm{~cm}^{2}$. If the primary winding is connected to a 50 Hz supply at 520 V , Calculate (i) Peak value of flux density in the core (ii) Voltage induced in the secondary winding (iii) Transformation ratio?

OR

7. a) State the Principle of operation of single phase transformer? Derive and expression for EMF induced in transformer?
b) The Power to an induction motor is supplied by a 12 pole, 3 -phase, 500 rpm alternator. The full load speed of the motor is 1440 rpm . Find the percentage slip and number of poles in the motor.

6M co3 L3

UNIT-IV

8. a) Discuss the different types of rectifiers with neat sketches?
b) List the different applications of the Diode

OR

9. a) Explain the operation of half wave diode rectifier with a neat diagram.
b) Explain how a $\mathrm{P}-\mathrm{N}$ unction diode acts as a rectifier.

UNIT-V

10. a) Draw the sketch of a Function Generator and explain its working
b) Briefly explain the classification of instruments

OR

11. Discuss how to measure the voltage, current and frequency with CRO?

Code: 20A326T
| B.Tech. || Semester Supplementary Examinations March 2022

Basic Mechanical Engineering

(Civil Engineering)
Time: 3 Hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ co $\quad \begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Write the advantages of soldering.
b) What are the properties of moulding sand?
c) Why multi stage compression is required. Write the application of 3 L1 air compressors.
d) What is the difference between refrigeration and air conditioning 4 L1 system?
e) Write the advantages and Disadvantages of chain drive over belt 5 and rope drive.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Explain the process of submerged arc welding with neat sketch. What are its advantages?
b) Differentiate arc welding and submerged arc welding.

6M 1
L2

OR

3. a) Explain in detail about the TIG and MIG welding processes.
b) Describe the brazing process with neat sketches.

6M

UNIT-II

4. a) Draw a neat diagram of grinding process, and explain its working principle.
b) Give an illustrative explanation on casting process?

Summarize the factors influencing the quality of finished casting.

OR

5. a) Compare and contrast between Drilling and Milling operations. 6M 2 L2
b) Give a comprehensive explanation of forging process. What are its limitations? Mention some of its applications.

UNIT-III

6. a) Explain the basic components and nomenclature of an IC engine with a neat sketch.
6M 3
b) Explain the working of 4 stoke SI Engine.
6M 3

OR

7. a) Classify air compressors and explain the working principle of multi stage compressor.

6M 3
b) Explain the working of 2 stroke SI Engine.

UNIT-IV

8. a) Explain the Vapour compression refrigeration system with suitable diagrams.
b) What is the difference between refrigerator and heat pump?

OR

9. a) What is Comfort air conditioning systems? What are the factors which affects the Comfort air conditioning systems?
b) Classify room air conditioning systems. Explain any one of the systems with neat diagram.

UNIT-V

10. a) Define slip and creep in the belt.
b) A shaft runs at $80 \mathrm{rpm} \&$ drives another shaft at 150 rpm through belt drive. The diameter of the driving pulley is 600 mm . Determine the diameter of the driven pulley in the following cases: (i) Taking belt thickness as 5 mm . (ii) Assuming for belt thickness 5 mm and total slip of 4%.
b) the systems with neat diagram. $6 \mathrm{M} \quad 4 \quad \mathrm{~L} 2$

OR

11. a) Write the advantages of V-belts over flat belt drive. 6M 5 L2
b) Discuss the about mechanical handling equipment. 6M 5 L2
