\square

Code: 20AC21T

| B.Tech. || Semester Supplementary Examinations December 2023

Differential Equations and Vector Calculus

(Common to all Branches)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ CO BL
a) Find the particular integral of (
b) Write the second order Legendre's Linear Equation form
c) Solve $p-q=1$

e) State Gauss Divergence Theorem

PART-B
Answer five questions by choosing one question from each unit (5x12=60 Marks) Marks CO BL

3. Solve $\left(D^{2}+3 D+2\right) y=e^{-x}+x^{2}+\cos x$

12M 1
3

UNIT-II

4. Solve ${ }_{x^{2}}^{2} \frac{d^{2} y}{d x^{2}}+-2_{x} \frac{d y}{d x}-4_{y}=x^{2}+2 \log x$

12M 23
OR
5. An uncharged con ${ }_{\text {din }}^{\text {en }} \underset{\text { ser of capacity }}{\mathbf{O R}} \mathrm{C}$ is charged by applying an e.m.f $\frac{E s, \overline{i n t}}{\sqrt{L C}}$.througl' leads of self-inductance L and negligible resistance, prove that at any time t, the charge on one of the plates is $\frac{\hat{k}^{C} C}{-\frac{2}{-}}\left\{\sin \frac{t}{\sqrt{L C}}-\frac{t}{\overline{\overline{L C}}} \cos \frac{t}{\overline{\overline{L C}}}\right\} \quad 12 \mathrm{M} \quad 2 \quad 3$

UNIT-III

6. a) Form the partial differential equation by eliminating arbitrary functions f and g from $z=f(x+a t)+g(x-a t)$
b) Identify the appropriate form and solve
 6M 3

OR

7. Using the metho jari aion of v ariables solve

$$
3 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0, \text { 'd of sel } u(x, 0)=4 e^{-x}
$$

UNIT-IV

 point $\mathrm{p}(1,2,3)$ in the direction $\begin{aligned} & f=x- \\ & F \\ & =x\end{aligned}$
Where Q is the point $(5,0,4)$
6M 43

$\mathrm{F}=\operatorname{grad}\left(x^{3}+y^{3}+{ }^{z 3}-3 x y z\right)$
6M 43 OR

 so, find its scalar potential

12M 4
3

UNIT-V

10. Using Grelgn's theoren. Evaluate $\int_{\underset{c}{\prime}(7)}$
where C is trle plane triar $\left.\operatorname{con}^{c} y-\sin x\right) d x+\operatorname{cosidy}$

$$
y=4, x=\frac{\pi}{2} \text { and } y=\frac{x}{\pi}
$$

12M 5

OR

11. Apply stokes theorem to evaluate $\iint_{c}\left(y_{2} d x+z d j,+x_{d z}\right)$ where C is the curve of intersection of $\begin{gathered}c \\ y_{2} \\ x^{2}+{ }_{y}{ }_{2}+{ }_{z}{ }^{2}=a^{2}{ }^{2}\end{gathered}$ and $x+z=a$
where C is tr $^{\text {le }}$ plane triar ${ }_{2 x}$ igl enclosied by the lines
\square
Hall Ticket Number :
Code: 20A323T
| B.Tech. || Semester Supplementary Examinations December 2023

Engineering Mechanics

(Common to CE and ME)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. In Part-A, each question carries Two marks.
 3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)
1.Answer ALL the following short answer questions $(5 \times 2=10 \mathrm{M}) \quad \mathrm{co} \mathrm{BL}$
a) Define the term Free body diagram.
b) State the laws of friction.
c) State the Parallel axis theorem.32

d) Differentiate between rectilinear motion and curvilinear motion. 42
e) State Work energy theorem.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. A light string $A B C D E$ whose extremity A is fixed, has weights W_{1} and W_{2} attached to it at B and C. It passes round a small smooth peg at D carrying a weight of 300 N at the free end E as shown in Fig 1.If in a state of equilibrium, $B C$ is horizontal and $A B$ and $C D$ make angles of 150° and 120° respectively with BC. Calculate (i) tensions in portions $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DE of the string (ii) the value of weights W_{1} and W_{2} and (iii) pressure on peg D.

3. a) Two cylinders P and Q rest in a channel as shown in Fig 2. The cylinder P has diameter of 100 mm and weighs 200 N , whereas the cylinder Q has diameter of 180 mm and weighs 500 N . If the bottom width of the box is 180 mm , with one side vertical and the other inclined at 60°, determine the pressures at all the four points of contact.

Fig. 2
$8 \mathrm{M} \quad 1 \quad 3$
b) Explain concept of equilibrium of coplanar force and noncoplanar systems.
$4 \mathrm{M} \quad 1 \quad 2$

UNIT-II

4. A kingpost of truss of 8 m span is loaded as shown in Fig.3.Find the forces in each member of the truss and tabulate the results.

Fig. 3
12M 23
OR
5. Two blocks A and B, connected by a horizontal rod and frictionless hinges are supported on two rough planes as shown in Fig. 4. The coefficients of friction are 0.3 between block A and the horizontal surface, and 0.4 between block B and the inclined surface. If the block B weighs 100 N , what is the smallest weight of block A,that will hold the system in equilibrium?

Fig. 4

UNIT-III

6. a) Determine the centroid of the shaded area formed by removing a semicircle of diameter 'r 'from a quarter circle of radius'r'
b) Find the centroid of an unequal angle section $100 \mathrm{~mm} \times 80$ $\mathrm{mm} \times 20 \mathrm{~mm}$ as shown in Fig. 5.

Fig. 5
7M 3

OR

7. Determine I_{xx} and l_{yy} of the cross-section of a cast iron beam as shown in Fig.6.

Fig. 6

UNIT-IV

8. a) A cage goes down a main shaft 750 m deep, in 45 s . For the first quarter of the distance only, the speed is being uniformly accelerated and during the last quarter uniformly retarded, the acceleration and retardation being equal. Find the uniform speed of the cage, while traversing the central portion of the shaft
b) A particle is thrown with a velocity of $5 \mathrm{~m} / \mathrm{s}$ at an elevation of 60° to the horizontal. Find the velocity of another particle thrown at an elevation of 45° which will have (a) equal horizontal range, (b) equal maximum height, and (c) equal time of flight.

6M 43

OR

9. a) A wheel rotates for 5 seconds with a constant angular acceleration and describes during this time 100 radians. It then rotates with a constant angular velocity and during the next five seconds describes 80 radians. Find the initial angular velocity and the angular acceleration
b) An automobile enters a curved road at $30 \mathrm{~km} / \mathrm{hr}$ and then leaves at $48 \mathrm{~km} / \mathrm{hr}$. The curved road is in the form of quarter of a circle and has a length of 400 m . If the car travels at constant acceleration along the curve, Calculate the resultant acceleration at both ends of the curve.

UNIT-V

10. a) Explain the concept of D'Alembert's Principle.
b) A body of weight 8 N is suspended by a light rope wound round a pulley of weight 60 N and radius 30 cm . The other end of the rope is fixed to the periphery of the pulley. If the weight is moving downwards, Calculate for the acceleration of 8 N weight and tension in the string.

OR

11. a) Explain the conservation of momentum with a neat sketch.
b) A body of 10 kg mass moving towards right with a speed of $8 \mathrm{~m} / \mathrm{s}$ strikes with another body of 20 kg mass moving towards left with $25 \mathrm{~m} / \mathrm{s}$. Determine: (i) final velocity of the two bodies (ii) loss in kinetic energy due to impact, and (iii) impulse acting on either body during impact. Take coefficient of restitution between the bodies as 0.65 .

Hall Ticket Number :										

Code: 20AC24T

| B.Tech. || Semester Supplementary Examinations December 2023

Engineering Physics

(Common to CE \& ME)
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) What is the physical significance of a curl of a vector? $\mathrm{CO1} \mathrm{~L}$?
b) Define Absorption coefficient. CO2 L1
c) What is Magnetic dipole moment? CO3 L1
d) Explain Spontaneous emission and Stimulated emission. $\mathrm{CO} \quad \mathrm{L} 2$
e) What is the use of a Bimetallic Strip? CO5 L2

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

		Marks	co	BL
	UNIT-I			
2. a)	Explain Inertial and Non-Inertial Frames of reference	8M	CO1	L2
b)	Discuss about Conservative Force.	4 M	CO1	L3
	OR			
3. a)	Outline Kepler's Laws qualitatively.	6M	CO1	L2
b)	Derive F=-grad V.	6M	CO1	L3
	UNIT-II			
4. a)	What is Reverberation and Reverberation time	4M	CO2	L2
b)	Summarize the factors affecting Acoustics and their remedies	8M	CO2	L2
	OR			
5. a)	Explain the production of Ultrasonics by Magneto Striction method.	6M	CO2	L2
b)	How Non Destructive Testing Pulse echo system Transmission method works?	6M	CO2	L3
	UNIT-III			
6. a)	Outline Lorentz method to determine the Internal field of a dielectric.	6M	CO3	L3

b) Explain Electronic Polarization in dielectrics.

OR
7. a) What is the Origin of Magnetic Moment? Explain.
b) What are the differences between Soft and Hard magnetic materials?

UNIT-IV

8. a) What are the Characteristics of Lasers
b) Explain the Construction and Working of Ruby Laser. OR
9. a) What is the Basic Principle of Optical Fiber? Explain
b) Explain the Propagation of signal through optical fiber and
derive the expressions for Acceptance Angle and Numerical Aperture.

UNIT-V

10. a) What are the different types of sensors and their applications?
b) Explain the working of Strain and Pressure sensors.

OR

11. a) How Fiber Optic Temperature Sensor works?
b) What is Hall effect? and How Hall Effect Sensor works?
*** End ${ }^{* * *}$
$6 \mathrm{M} \mathrm{CO3} \mathrm{L2}$

6M cos L2

6M cos L3
$6 \mathrm{M} \mathrm{CO3} \mathrm{L2}$ $6 \mathrm{M} \mathrm{CO3} \mathrm{L2}$

4M CO4 L2
8M CO4 L2

$$
4 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{~L} 2
$$

8M CO4 L2
$6 \mathrm{M} \mathrm{CO5}$ L2

6 M CO5 L3
\square
Code: 20A223T
| B.Tech. || Semester Supplementary Examinations December 2023

Basic Electrical and Electronics Engineering (Common to CE, CSE, Al\&DS, CSE(Al) and CSE(DS))

Max. Marks: 70
Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) State and explain Kirchhoff's Current Law. 1
b) What is the significance of back emf? 2
c) Define regulation and efficiency of a transformer.
d) What is a PN Junction diode and how this is to be operated.
e) What are the essential components of indicating instrument?

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks) Marks CO BL

UNIT-I

2. a) Two batteries A and B with the internal resistances R_{A} and R_{B} are connected in parallel to supply current of 155 A to a load resistance R_{L}. Given $E_{A}=122 \mathrm{~V}, R_{A}=0.15$ ohms and $R_{B}=0.1$ ohms and $I_{B}=60 \mathrm{~A}$. Calculate E_{B} and power drawn by the load?
b) A 35 V d.c supply is connected across a resistance of 600 ohms in series with an unknown resistance R. A voltmeter having a resistance 1200 ohms is connected across 600 ohms and shows a reading of 5 V . Calculate the value of resistance R .

OR

3. a) Define the following terms with an example:
(i) Unilateral elements
(ii) Distributed elements (iii) Linear elements (iv) active elements
b) A circuit consists of three resistances of 12,18 and 36 ohms respectively by joined in parallel and the combination is connected in series with a resistance of 12 ohms. The whole circuit is connected to 60 V supply. Calculate current in each branch, total current drawn and power dissipated in each resistor.

UNIT-II

4. a) Explain in detail about the classification of DC generators based on the type of excitation? Give the connection diagrams.
b) A 4 pole 220 V wave connected shunt motor gives 11.19 kW when running at 1000 r.p.m and drawing armature and field current of 50A and 1 A respectively. It has 540 conductors. Its resistance is 0.1 ohms. The brush drop is 1 V per brush. Calculate total torque, useful torque, flux per pole, rotational losses and efficiency?

OR

5. a) What is the operating principle of a DC motor? Explain in detail
b) A long shunt compound generator delivers a load current of 30A at 400 V and has armature, series field and shunt field resistances of 0.04 ohms, 0.02 ohms and 180 ohms respectively. Calculate the generated voltage and the armature current. Allow 1V per brush for contact drop

UNIT-III

6. a) Explain the transformer on no-load with phasor diagram.
b) A single phase core type 50 Hz transformer has a square having 25 cm side, the maximum flux density in the core $1.2 \mathrm{wb} / \mathrm{m} 2$.Calculate the number of turns per limb on H.V. side and L.V side for a $3400 \mathrm{~V} / 240 \mathrm{~V}$ ratio.

OR

7. a) Draw and explain the torque-slip characteristics of three-phase induction motor
b) A 3-phase star connected alternator has 8-poles and runs at 750 rpm . It has 24 slots/phase and 10 conductors per slot, the flux being $0.055 \mathrm{~Wb} /$ pole. Calculate the line voltage. Assume winding factor to be 0.96 .

UNIT-IV

8. a) Explain about the operation of a transistor as amplifier with a neat of circuit diagram?
b) Draw and explain the circuit diagram of a common emitter amplifier and draw its charcteristics?

OR

9. a) For a transistor connected in common-emitter configuration, sketch the output characteristics relating collector current and the collector emitter voltage, for various values of base current. Explain the shape of the characteristics.
b) Justify the answer the transistor acts as an amplifier?

6M 4

UNIT-V

10. Explain How frequency is measured by using CRO.

12 M 5

OR

11. Classify the cables and explain in details any of two of them.

Code: 20A326T
| B.Tech. || Semester Supplementary Examinations December 2023

Basic Mechanical Engineering

(Civil Engineering)
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) What are the basic metal joining processes? CO1 L1,L2
b) What is meant by casting process?

CO2 L1,L2
c) What are the main components of an IC engine?

CO3 L1,L2
d) What is meant by Conduction?

CO4 L1,L2
e) How belt drives are used for power transmission?

CO5 L1,L2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. Discuss the process of Oxy-acetylene welding with the help of a neat sketch.

OR
3. What is meant by arc welding? Explain any one type of arc welding.

12M CO1

UNIT-II

4. Explain anyone type of manufacturing process with a suitable application.

12M CO2
L1,L2
OR
5. Explain the operation of Drilling with a neat sketch.

12M CO2

UNIT-III

6. State and explain the working principle of two-stroke engines.

12M CO3
OR
7. Explain the working of an Air compressor with a neat sketch.

12M CO 3

L1,L2

UNIT-IV

8. Explain with the help of a neat sketch the working of a Vapour compression refrigerator test rig.

OR

9. Discuss the different types of Ventilation systems.

12M
CO4

UNIT-V

10. Explain as how power transmission takes place by a rope drive with a suitable example.

OR

11. Explain the working of a bull dozer with a neat sketch.

12M
CO5

12M CO5
L1,L2

