\square

Code: 20AC21T

| B.Tech. || Semester Supplementary Examinations February 2023

Differential Equations and Vector Calculus

(Common to all Branches)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$)

CO
CO1
a) Find the P.I of $\left(D^{2}-2 D+4\right) y=e^{x} \cos x$

b) Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x$

CO2
c) Find the partial differential equation of all planes passing through the origin.
d) Find $\nabla\left(\nabla \cdot \frac{\bar{r}}{\mathrm{r}}\right)$
e) State Stokes theorem.

CO5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
Marks CO

UNIT-I

2. Solve $\left(D^{2}-4 D+4\right) y=8 x^{2} e^{2 x} \sin 2 x$.

OR

3. Solve, by the method of Variation of Parameters, $y^{\prime \prime}-2 y^{\prime}+y=e^{x} \log x$

12M CO1

UNIT-II

4. In an L-C-R circuit, the charge q on a plate of a condenser is given by $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=E \sin p t$. The circuit is tuned to resonance so that $p^{2}=1 / L C$. If initially the current i and the charge q be zero, show that, for small values of R / L, the current in the circuit at time t is given by ($\mathrm{Et} / 2 \mathrm{~L}$) sin pt .
5. Solve $(2 x-1)^{2} \frac{d^{2} y}{d x^{2}}+(2 x-1) \frac{d y}{d x}-2 y=8 x^{2}-2 x+3$

12M CO2

UNIT-III

6. a) Form the partial differential equation by eliminating the arbitrary function from $\phi\left(\frac{y}{x}, x^{2}+y^{2}+z^{2}\right)=0$.

6M CO3
b) Solve the partial differential equation $\frac{\mathrm{p}}{\mathrm{x}^{2}}+\frac{\mathrm{q}}{\mathrm{y}^{2}}=\mathrm{z}$.

6M CO3

OR

7. Use Separation of Variables to solve $4 u_{x}+u_{y}=3 u_{\text {with }} u(0, y)=3 e^{-y}-e^{-5 y}$.

12M CO3

UNIT-IV

8. a) Find the values of a and b so that the surfaces

$$
a x^{2}-b y z=(a+2) x \text { and } 4 x^{2} y+z^{3}=4
$$

may intersect orthogonally at the point $(1,-1,2)$.
6M co4
b) Show that $\frac{\bar{r}}{r^{3}}$ is solenoidal.

6M CO4
9. a) Find constants a, b, c so that the vector $\overline{\mathrm{A}}=(\mathrm{x}+2 \mathrm{y}+\mathrm{az}) \overline{\mathrm{i}}+(\mathrm{bx}-3 \mathrm{y}-\mathrm{z}) \overline{\mathrm{j}}+(4 \mathrm{x}+\mathrm{cy}+2 \mathrm{z}) \overline{\mathrm{k}}$ is irrotational. Also find ϕ such that $\overline{\mathrm{A}}=\nabla \phi$
b) Prove that div curl $\bar{f}=0$.

6M CO4

UNIT-V

10. Evaluate $\iint_{\mathrm{s}} \overline{\mathrm{F}} \cdot \overline{\mathrm{n}} \mathrm{ds}$ where

$$
\overline{\mathrm{F}}=12 \mathrm{x}^{2} \mathrm{y} \overline{\mathrm{i}}-3 \mathrm{y} \mathrm{z} \overline{\mathrm{j}}+2 \mathrm{z} \overline{\mathrm{k}} \text { and } \mathrm{S} \text { is the portion of }
$$

the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$ included in the first octant.
12M CO5

OR

11. Verify Green's theorem for

$$
\int_{c}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right] \text { where } c \text { is the region }
$$

bounded by $\mathrm{x}=0, \mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=1$.
12M CO5

Code: 20A221T
| B.Tech. || Semester Supplementary Examinations February 2023

Electrical Circuits

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) What is the significance of Network Topology in electrical networks? 1
b) Define Average value of an alternating quantity? 1 L1
c) What are the possible phase sequences of three phase supply? 2 L2
d) State Millman's theorem for DC excitation? 4 L1
e) Define resonance for a parallel RLC circuit? 5 L1

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Analyze super mesh analysis of an electrical network with suitable example. $4 \mathrm{M} \quad 1$
b) Determine the current flowing through 5 resistor in the given circuit using nodal analysis?

OR
3. a) Explain the procedure of formulating Basic Tieset matrix?
b) Formulate the Basic Cutset matrix for the given connected graph?

> UNIT-II
4. a) List the types of AC Supply waveforms?
b) Determine the Average voltage and RMS voltage of a half wave rectifier circuit having V^{m} as the maximum value.

OR

5. a) What is the significance of power factor in electrical networks?
b) A Sine wave generator supplies a $50 \mathrm{~Hz}, 50 \mathrm{~V}$ RMS signal to a 10 resistor in series with a 0.5 H inductor and 10 F capacitor. Determine the total impedance, current, phase angle, capacitive voltage, inductive voltage and resistive voltage

UNIT-III

6. For a three phase delta connected system, with neat phasor diagram, prove that
i) Line Current $=\sqrt{3} \times$ Phase Current
ii)Line Voltage= Phase Voltage OR
7. Analyze the measurement of three phase active power using two wattmeter method?

UNIT-IV

8. a) Prove that the efficiency is 50 percent while transferring the maximum power from source to load.

6M 4
L3
b) Explain Reciprocity theorem with suitable example?
$6 \mathrm{M} \quad 4$
L2
OR
9. Determine the current flowing through 3 resistor as shown in the given circuit using Thevenin's theorem.

UNIT-V
12M 4 L3

12M 5 L3

OR

11. a) Analyze the significance of Dot Convention for coupled circuits?

6M 6
L3
b) Two coils connected in series have an equivalent inductance of 0.4 H when connected in aiding and an equivalent inductance 0.2 H when the connection is opposing, Calculate the mutual inductance between the coils.

Code: 20A222T

| B.Tech. || Semester Supplementary Examinations February 2023

Fundamentals of Electronic Devices and Circuits

(Electrical and Electronics Engineering)

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO}$
a) What is voltage regulation? Mention the types of voltage regulation? CO1
b) Why the collector of transistor made larger and moderately doped? CO 2
c) Why h parameter model is important for BJT? CO ?
d) FET has lower thermal noise than BJT? Justify? CO4
e) What are the different factors that determine the response time of photodetector? CO5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks) Marks CO

UNIT-I

2. a) Derive the diode current equation and explain each term involved?
$6 \mathrm{M} \mathrm{CO1}$
b) A 100 V peak square wave with an average value of 0 V and a period of 10 ms is negatively clamped at 20 V . Draw the circuit diagram necessary for this purpose.

OR

3. a) With the help of a circuit diagram explain the working of two-level diode clipper?
b) For a germanium diode carrying 10 mA the required forward bias is about 0.4 V . Estimate the reverse saturation current and the bias voltage required for the currents of 1 m A and 100 mA .

6M CO1

UNIT-II

4. a) With a neat diagram explain the concept of $D C$ load line?

6 M CO 2
b) A self-bias transistor with $\beta=100$ is used in self-biasing arrangement with $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=4.8 \mathrm{~K}$. The operating point Q is at $\mathrm{V}_{\mathrm{C}}=8 \mathrm{~V}$, $\mathrm{I}_{\mathrm{C}}=1.2$ $m A$. Find the values of R_{1}, R_{2} and R_{E}.

OR

5. a) Draw the circuit diagram of a self-bias circuit using CE configuration and explain how it stabilizes the operating point.
b) For the fixed bias circuit $R_{B}=120 \mathrm{~K}$, Calculate I_{B}, I_{C}, and V_{CE} if $\mathrm{V}_{\mathrm{CC}}=12$ $\mathrm{V}, \mathrm{R}_{\mathrm{C}}=1.1 \mathrm{~K}$, and $\beta=100$.

6 M CO 2

6 M CO 2
UNIT-III
6. a) Draw CB configuration of transistor and sketch the input and outputcharacteristics of CB configuration?
b) The reverse leakage current of the transistor when connected in CB configuration is 0.2 mA and it is 18 A when the same transistor is connected in CE configuration. Determine $\alpha_{d c} \& \beta_{d c}$ of the transistor. Assume $\mathrm{I}_{\mathrm{B}}=30 \mathrm{~mA}$.

OR

7. a) Draw the h-parameter equivalent circuit for a typical common emitter amplifier and derive the expression for A_{i} and R_{i}.
b) The hybrid parameters for CE amplifier are $h_{i}=1000$, $h_{0}=25 \times 10^{-6}$ mhos, $h_{f}=150$, and $h_{r}=1.2 \times 10-4$. The transistor has a load resistance of 10 K in collector and supplied from signal source of resistance 5 K . Calculate the values of input impedance, output impedance, current gain and voltage gain.

UNIT-IV

8. a) Sketch and explain the typical shape of drain characteristics of JFET for $\mathrm{V}_{\mathrm{GS}}=0$ with indication of four region of operation.
b) For an n-channel silicon FET with $a=3 \times 10^{-4} \mathrm{~cm}$ and $\mathrm{N}_{\mathrm{d}}=10^{15}$ electrons $/ \mathrm{cm}^{3}$. Evaluate (a) pinch off voltage (b) the channel half width for $\mathrm{V}_{\mathrm{GS}}=0.5 \mathrm{~V}_{\mathrm{P}}$.

OR

9. a) Explain the working of depletion mode MOSFET. Draw and explain its VI characteristics.
6 M CO 4
b) When V_{GS} of the FEET changes from -2 V to 3 V the drain Voltage changes from 1 mA to 1.5 mA determine the value of transconductance.
6 M CO 4

UNIT-V

10. a) Explain the working of varactor diode.
$6 \mathrm{M} \mathrm{CO5}$
b) The intrinsic stand -off ration for an UJT is determined to be 0.6 if the inter base resistance is 10 K . What are the values of $R B_{1}$ and $R B_{2}$?
$6 \mathrm{M} \mathrm{CO5}$

OR

11. a) Explain the principle of operation of photo transistors
$6 \mathrm{M} \mathrm{CO5}$
b) Describe the working principle of SCR and draw its V-I characteristics.
$6 \mathrm{M} \mathrm{CO5}$
\square
Code: 20AC23T
| B.Tech. || Semester Supplementary Examinations February 2023

Chemistry

(Common to EEE, ECE and AI\&ML)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ Co | Blooms |
| :---: |
| Level |

a) Explain ion-selective electrodes and their applications. CO1 L2
b) Differentiate primary batteries and secondary batteries. CO2 L2
c) Outline the preparation of Buna-S rubber $\mathrm{CO} \quad \mathrm{L4}$
d) State the Beer Lambert law and define all terms in it. CO4 L1
e) Explain molecular machines with TWO examples.

CO5 L2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Define is single electrode potential. Derive Nernst equation for the determination of single electrode potential.
b) Differentiate Galvanic cell and Electrolytic cell.

6M CO1
$6 \mathrm{M} \mathrm{CO1}$

OR

3. a) What is galvanic cell? Explain the determination EMF of a galvanic cell.
b) Explain the construction, working and uses of glass membrane electrode.

6M CO1 L2

UNIT-II

4. a) Describe the construction, working and applications of dry cell.
b) What are fuel cells? Discuss the classification and merits of fuel cells.

6M CO2 L2

6M CO2 L4

OR

5. a) Discuss the construction, working and applications of Zn -air battery.
b) Illustrate the construction working and applications of $\mathrm{H}_{2}-$ O_{2} fuel cell.

6M CO2

6M CO2 L4

UNIT-III

6. a) Differentiate thermoplastics and thermo settings.
$6 \mathrm{M} \mathrm{CO3}$
b) Explain the preparation and uses of Bekalite.

6 M CO 3

OR

7. a) Differentiate addition polymerization and condensation polymerization..

6M CO3
b) Explain the conduction mechanism in poly aniline.

6 M CO

UNIT-IV

8. Describe the working principle of Thin layer chromatography (TLC)? Write its applications

OR

9. a) Discuss the principle involved in pH metry and its applications
b) Explain the working principle and applications of UV-Vis spectroscopy

6M CO4 L2

6M CO4 L2

UNIT-V

10. a) Explain Catenanes as artificial molecular machines

6 M co5
b) Describe the linear motion in Rotaxanes
$6 \mathrm{M} \mathrm{CO5}$

OR

11. Explain about each of the following
a) Cyclodextrin based molecular switches
b) Displacement switching

12M CO5 L2

