\square
Code: 20A323T
| B.Tech. || Semester Supplementary Examinations February 2023
Engineering Mechanics
(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) What is meant by composition and resolution of forces? $\mathbf{1}$
b) What is the difference between coefficients of static and kinetic friction? 2
c) What do you mean by first moment of area and second moment of area? $\mathbf{3}$
d) Write the equations of plane motion of a rigid body. 4
e) Define impulse and momentum. State impulse-momentum principle in $\quad \mathbf{5} \quad 1$ translation.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. State and prove Varignon's theorem applied to concurrent forces.

OR

3. The force system shown in Figure 1 has a resultant of 200 N pointing up along the Y-axis. Compute the values of F and θ required to give this resultant. Assume the units of forces in Newtons.

Figure 1
12M 1

UNIT-II

4. Two identical blocks A and B are connected by a rod and rest against vertical and horizontal planes, respectively, as shown in Figure 2. If sliding impends when $\theta=45^{\circ}$, determine the coefficient of friction μ, assuming it to be the same at both floor and wall.

Figure 2
OR
5. Find the forces in all the members of the truss shown in Figure 3.

Figure 3
12 M 2
UNIT-III
6. Determine the centroid of the shaded triangular area shown in Figure 4 with respect to the given X and Y - axes. Assume the units in figure in meters.

Figure 4
12M 3
OR
7. Calculate the moment of inertia I_{xx} of a homogeneous right circular cone with respect to an axis X through the vertex and parallel to the plane of the base.
8. a) Define normal and tangential components of accelerations. Write the equations.
b) The pilot of an airplane A flying horizontally with constant speed $v=450 \mathrm{kmph}$ at an elevation $\mathrm{h}=600 \mathrm{~m}$ above a level plain wishes to bomb a target B on the ground (Figure 5). At what angle $\boldsymbol{\theta}$ below the horizontal should he see the target at the instant of releasing the bomb in order to score a hit?

Figure 5
84
3

OR

9. a) What is instantaneous center of rotation of a rigid body making plane motion? Explain with an example.
b) A locomotive runs along a straight level track with constant acceleration $\mathrm{a}=0.2 \mathrm{~g}$. Find the total acceleration of a point at the top of the rim of a driver wheel of radius $r=1 \mathrm{~m}$ when the speed of the locomotive is 25 kmph .

UNIT-V

10. a) State and prove Impulse - Momentum principle.
b) A locomotive weighing 60 tons has a velocity of 15 kmph and backs into a freight car weighing 10 tons that is at rest on a level train track. After the coupling is made, with what velocity ' v ' will the entire system continue to move?

OR

11. A solid circular cylinder and a sphere are started from rest at the top of an inclined plane at the same time, and both roll without sliding down the plane. If, when the sphere reaches the bottom of the incline, the cylinder is 12 m behind it, what is the total length S of the incline?
\square

Code: 20AC24T

| B.Tech. || Semester Supplementary Examinations February 2023

Engineering Physics

(Common to CE \& ME)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) Give examples of inertial and non-inertial frames of reference.
CO1
b) Classify A, B and C scan displays?

CO2
c) Define is Weiss domain theory of ferromagnetism?

CO3
d) State and explain in brief the principle of communication through optical fibers. CO4
e) Mention two application of 'Hall effect' as a sensor'.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Given $\phi=2 x^{2}+3 y^{3}-4 z$, determine $\operatorname{grad} \phi, \operatorname{div}(\operatorname{grad} \phi)$, curl(gradф)
b) What is Foucault's pendulum and where is it applied?

8M CO1
4 M CO 1

OR

3. a) Discuss Newton's laws of motion in rotating frame of reference.
b) Explain the terms center of mass, torque and newton's laws of motion in a frame of reference with constant angular velocity.

UNIT-II

4. a) Derive Sabine's formula using growth and decay method and mention two methods to determine acoustic absorption coefficient.

6M CO2 L6
b) Analyze the method of magneto strictive ultrasonic production.

6M CO2 L4
5. a) Enumerate the factors and concerned remedies for an acoustically good building. 4M CO2 L1
b) What is pulse echo system? Explain how is it used in transmission and reflection modes for nondestructive testing.
UNIT-III6. a) What is Polarisability and derive an expression for ionicpolarisabilty of an ionic substance.b) What is magnetic moment and derive an expression forBhor magneton.
7. a) What are the different types of polarization mechanisms?When radii two atoms are in the ratio 1:3 what is theelectronic polarization ratio of the two atoms and why.
When radii two atoms are in the ratio $1: 3$ what is the
electronic polarization ratio of the two atoms and why.
b) Differentiate hard and soft magnetic materials along with a hysteresis curve.
b) What is magnetic moment and derive an expression for Bhor magneton.

OR
 OR

UNIT-IV

8. a) Deduce a relation between Einstein's coefficients.
b) Differentiate optical fibers based on the refractive index profile

OR

9. a) Explain the terms population inversion, pumping mechanism and justify why population inversion is required for lasing action.
b) What is acceptance angle and evaluate what happens to the numerical aperture value of the given fiber if is used in water of refractive index 1.33 in comparison to using in air.
6M CO4 L5
8M CO3 L4
4M CO3 L4

UNIT-V

10. a) What is a sensor and what are the basic components in a
sensor?
b) Explain active and passive optical fiber sensors and device
b) Explain active and passive optical fiber sensors and device
an optical fiber pressure sensor.
6M cos L6

OR

11. a) What is magneto striction and outline the working of magneto strictive sensor.
6M CO4 L5
6M CO4 L6
6M CO4 L4
magneto strictive sensor
b) Explain the construction and working of bimetallic strip temperature sensor.
6M CO5 L4
b) Explain the construction and working of bimetallic strip
$6 \mathrm{M} \cos \mathrm{L} 2$
\square

Code: 20AC21T

| B.Tech. || Semester Supplementary Examinations February 2023

Differential Equations and Vector Calculus

(Common to all Branches)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$)

CO
CO1
a) Find the P.I of $\left(D^{2}-2 D+4\right) y=e^{x} \cos x$

b) Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x$

CO2
c) Find the partial differential equation of all planes passing through the origin.
d) Find $\nabla\left(\nabla \cdot \frac{\bar{r}}{\mathrm{r}}\right)$
e) State Stokes theorem.

CO5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
Marks CO

UNIT-I

2. Solve $\left(D^{2}-4 D+4\right) y=8 x^{2} e^{2 x} \sin 2 x$.

OR

3. Solve, by the method of Variation of Parameters, $y^{\prime \prime}-2 y^{\prime}+y=e^{x} \log x$

12M CO1

UNIT-II

4. In an L-C-R circuit, the charge q on a plate of a condenser is given by $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=E \sin p t$. The circuit is tuned to resonance so that $p^{2}=1 / L C$. If initially the current i and the charge q be zero, show that, for small values of R / L, the current in the circuit at time t is given by ($\mathrm{Et} / 2 \mathrm{~L}$) sin pt .
5. Solve $(2 x-1)^{2} \frac{d^{2} y}{d x^{2}}+(2 x-1) \frac{d y}{d x}-2 y=8 x^{2}-2 x+3$

12M CO2

UNIT-III

6. a) Form the partial differential equation by eliminating the arbitrary function from $\phi\left(\frac{y}{x}, x^{2}+y^{2}+z^{2}\right)=0$.

6M CO3
b) Solve the partial differential equation $\frac{\mathrm{p}}{\mathrm{x}^{2}}+\frac{\mathrm{q}}{\mathrm{y}^{2}}=\mathrm{z}$.

6M CO3

OR

7. Use Separation of Variables to solve $4 u_{x}+u_{y}=3 u_{\text {with }} u(0, y)=3 e^{-y}-e^{-5 y}$.

12M CO3

UNIT-IV

8. a) Find the values of a and b so that the surfaces

$$
a x^{2}-b y z=(a+2) x \text { and } 4 x^{2} y+z^{3}=4
$$

may intersect orthogonally at the point $(1,-1,2)$.
6M co4
b) Show that $\frac{\bar{r}}{r^{3}}$ is solenoidal.

6M CO4
9. a) Find constants a, b, c so that the vector $\overline{\mathrm{A}}=(\mathrm{x}+2 \mathrm{y}+\mathrm{az}) \overline{\mathrm{i}}+(\mathrm{bx}-3 \mathrm{y}-\mathrm{z}) \overline{\mathrm{j}}+(4 \mathrm{x}+\mathrm{cy}+2 \mathrm{z}) \overline{\mathrm{k}}$ is irrotational. Also find ϕ such that $\overline{\mathrm{A}}=\nabla \phi$
b) Prove that div curl $\bar{f}=0$.

6M CO4

UNIT-V

10. Evaluate $\iint_{\mathrm{s}} \overline{\mathrm{F}} \cdot \overline{\mathrm{n}} \mathrm{ds}$ where

$$
\overline{\mathrm{F}}=12 \mathrm{x}^{2} \mathrm{y} \overline{\mathrm{i}}-3 \mathrm{y} \mathrm{z} \overline{\mathrm{j}}+2 \mathrm{z} \overline{\mathrm{k}} \text { and } \mathrm{S} \text { is the portion of }
$$

the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$ included in the first octant.
12M CO5

OR

11. Verify Green's theorem for

$$
\int_{c}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right] \text { where } c \text { is the region }
$$

bounded by $\mathrm{x}=0, \mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=1$.
12M CO5
\square

Code: 20A321T

| B.Tech. || Semester Supplementary Examinations February 2023

Engineering Materials

(Mechanical Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ Co $\quad \begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Draw the unit cell of FCC and BCC Crystal Structures $\mathbf{C O 1}$
b) Give two examples for eutectic systems $\mathbf{C O 2}$
c) Mention any two applications of high carbon steels $\mathbf{C O 3}$
d) Define hardenability CO4
e) List any two advantages of hand layup process CO5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL
UNIT-I2. a) Explain the process of crystallization in pure metals6M CO1L2
b) Illustrate the process of calculation of grain size using planimetric method 6M CO1 L3
OR
3. a) Write about electron compounds and intermediate alloy phases? 6M CO1 L1
b) State Hume Rothery's rules for the formation of substitutional type of solid solutions. 6M CO1 L2
UNIT-II4. a) Explain the isomorphous system with an example ofCopper Nickel System6 M CO 2L2
b) What is the use of lever Rule 6 M CO 2 L1
OR
5. a) Explain the eutectic and eutectoid reactions in the Fe -Fe3C equilibrium diagram6M CO2L2
b) Explain how the equilibrium diagrams are constructed with help of an example 6M CO2 L2
UNIT-III
6. a) Explain composition, microstructure, properties and applications of any two cast irons. 6M CO3 L2
b) Write a note on Hadfield manganese steels and low alloy steels
OR
7. a) Differentiate between austenitic stainless steel and martensitic stainless steels $6 \mathrm{M} \mathrm{CO3}$ L2
b) What are the elements in Grade 5 Titanium Alloy. Mention their applications 6M CO3 L2
UNIT-IV
8. a) Distinguish between annealing and normalizing of steels. 6M CO4 L2
b) Explain the induction hardening process with the help of a sketch 6M CO4 L2
OR
9. a) Explain Nitriding of steels? State the advantages and
b) List the ferrite and austenite stabilizers in the iron carbon diagram 6M CO4 L1
disadvantages of Nitriding treatment over carburizing treatment $6 \mathrm{M} \mathrm{CO4}$ L2
UNIT-V
10. a) Explain the role are matrix and reinforcement in composites $6 \mathrm{M} \mathrm{CO5}$ L2
b) Compare the properties of crystalline ceramics and glass ceramics $6 \mathrm{M} \mathrm{CO5}$ L2
OR
11. a) What are $\mathrm{C}-\mathrm{C}$ composites? List their applications$6 \mathrm{M} \mathrm{CO5}$L2
b) What are cermets? Mention their applications
$6 \mathrm{M} \mathrm{CO5}$L2

