Hall Ticket Number: **R-20** Code: 20A323T

I B.Tech. II Semester Supplementary Examinations December 2023

Engineering Mechanics

(Common to CE and ME)

Max. Marks: 70 Time: 3 Hours ******

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**)

2. In Part-A, each question carries Two marks.

e) State Work energy theorem.

3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{M})$					
 a) Define the term Free body diagram. 		1	1		
b) State the laws of friction.		2	2		
c) State the Parallel axis theorem.		3	2		
d) Differentiate between rectilinear motion and curvilin	ear motion.	4	2		
e) State Work energy theorem.		5	2		

PART-B

Answer *five* questions by choosing one question from each unit ($5 \times 12 = 60$ Marks)

Marks CO BL

UNIT-I

A light string ABCDE whose extremity A is fixed, has 2. weights W₁ and W₂ attached to it at B and C. It passes round a small smooth peg at D carrying a weight of 300 N at the free end E as shown in Fig 1.If in a state of equilibrium, BC is horizontal and AB and CD make angles of 150° and 120° respectively with BC. Calculate (i) tensions in portions AB, BC, CD and DE of the string (ii) the value of weights W_1 and W_2 and (iii) pressure on peg D.

12M 1 3

Code: 20A323T

3. a) Two cylinders P and Q rest in a channel as shown in Fig 2. The cylinder P has diameter of 100 mm and weighs 200 N, whereas the cylinder Q has diameter of 180 mm and weighs 500 N .If the bottom width of the box is 180 mm, with one side vertical and the other inclined at 60°, determine the pressures at all the four points of contact.

Fig.2

b) Explain concept of equilibrium of coplanar force and noncoplanar systems.

4M 1 2

3

M8

UNIT-II

4. A kingpost of truss of 8 m span is loaded as shown in Fig.3.Find the forces in each member of the truss and tabulate the results.

12M 2 3

5. Two blocks A and B, connected by a horizontal rod and frictionless hinges are supported on two rough planes as shown in Fig. 4. The coefficients of friction are 0.3 between block A and the horizontal surface, and 0.4 between block B and the inclined surface. If the block B weighs 100 N, what is the smallest weight of block A,that will hold the system in equilibrium?

Fig.4

UNIT-III

6. a) Determine the centroid of the shaded area formed by removing a semicircle of diameter 'r 'from a quarter circle of radius'r'

5M 3 3

b) Find the centroid of an unequal angle section 100 mm × 80 mm × 20 mm as shown in Fig. 5.

7M 3 3

7. Determine I_{xx} and I_{yy} of the cross-section of a cast iron beam as shown in Fig.6.

12M ₃

3

- 8. a) A cage goes down a main shaft 750 m deep, in 45 s. For the first quarter of the distance only, the speed is being uniformly accelerated and during the last quarter uniformly retarded, the acceleration and retardation being equal. Find the uniform speed of the cage, while traversing the central portion of the shaft
- 6M 4 3

Code: 20A323T

b) A particle is thrown with a velocity of 5 m/s at an elevation of 60° to the horizontal. Find the velocity of another particle thrown at an elevation of 45° which will have (a) equal horizontal range, (b) equal maximum height, and (c) equal time of flight.

6M

3

3

3

2

3

3

OR

A wheel rotates for 5 seconds with a constant angular acceleration and describes during this time 100 radians. It then rotates with a constant angular velocity and during the next five seconds describes 80 radians. Find the initial angular velocity and the angular acceleration

6M

- b) An automobile enters a curved road at 30 km/hr and then leaves at 48 km/hr. The curved road is in the form of quarter of a circle and has a length of 400 m. If the car travels at constant acceleration along the curve, Calculate the resultant acceleration at both ends of the curve.

6M 4

UNIT-V

10. a) Explain the concept of D'Alembert's Principle.

4M

- 5
- b) A body of weight 8 N is suspended by a light rope wound round a pulley of weight 60 N and radius 30 cm. The other end of the rope is fixed to the periphery of the pulley. If the weight is moving downwards, Calculate for the acceleration of 8 N weight and tension in the string.

M8

5

OR

11. a) Explain the conservation of momentum with a neat sketch.

4M

5 2

b) A body of 10 kg mass moving towards right with a speed of 8m/s strikes with another body of 20 kg mass moving towards left with 25 m/s. Determine: (i) final velocity of the two bodies (ii) loss in kinetic energy due to impact, and (iii) impulse acting on either body during impact. Take coefficient of restitution between the bodies as 0.65.

8M

5

*** End ***

	На	all Ticket Number :			
	C •	do: 20.4.221T	R-20		
	Co	de: 20A321T I B.Tech. II Semester Supplementary Examinations December	 r 2023		
		Engineering Materials	_0_0		
		(Mechanical Engineering)			
	Mo	x. Marks: 70 *******	ime: 3 H	ours	
	Not	te: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B			
		<u>PART-A</u> (Compulsory question)			
1. /	Ans	wer ALL the following short answer questions $(5 \times 2 = 7)$	10M)	СО	BL
		ist the different imperfections in crystals.	,	1	L1
		State phase rule.		2	L2
		Give two applications of grey castiron and white castiron.		3	 L1
		Define tempering.		4	L1
	•	List various methods to manufacture composites.		5	L1
	,	<u>PART-B</u>			
	Α	nswer <i>five</i> questions by choosing one question from each unit ($5 \times 12 =$		-	
		LINIT	Marks	СО	BL
2	a)	UNIT-I Define crystal structure. Briefly write different types of	:		
۷.	u)	crystal structures.	6M	1	L1
	b)	Explain any two types of imperfections.	6M	1	L2
	- /	OR		•	
3.	a)	What is the necessity of alloying? Explain different			
	,	intermediate alloy phases with suitable examples.	6M	1	L2
	b)	Explain substitutional solid solution and interstitial solid			
		solution.	6M	1	L1
		UNIT-II			
4.		Explain the phase diagram of binary isomorphous alloy			
		system.	12M	2	L1
_		OR			
5.		Draw the Iron-Iron carbide (Fe-Fe ₃ C) diagram neatly and		_	• -
		explain the phases present in the diagram. UNIT-III	12M	2	L2
6	a)	Explain high speed steel and stainless steel	6M	3	L1
Ο.	aj	Explain high speed steel and stainless steel	OIVI	3	L∣

Code: 20A321T

	b)	Write about the composition, structure, properties and uses of white cast iron and Spheroidal graphite cast iron.	6M	3	L2
		OR			
7.	a)	Briefly explain the properties, compositions and application of Aluminium alloys.	6M	3	L1
	b)	Briefly explain the properties, compositions and application of Titanium alloys.	6M	3	L1
		UNIT-IV			
8.		What is heat treatment? Explain various heat treatment processes briefly.	12M	4	L1
		OR			
9.		Explain various surface treatment processes and their characteristics and applications. UNIT-V	12M	4	L1
10.		Name, explain the properties and applications of any four types of ceramics.	12M	5	L1
		OR			
11.		What is a composite? Explain various types of composites.	12M	5	L1

	Hall	Ticket Number :														
_	Cod	e: 20AC24T							I <u>. </u>					R-20		
		I B.Tech. II Ser	nester S				•			ation	ns De	ecen	nber	2023		
					_	eeri	_	•								
	Мах	c. Marks: 70		(C	omn	non	10 C	E &	/VIE)				Tir	me: 3 H	lours	
	NT .	1.0	• .	C.			****				D)					
-	Note	: 1. Question Pape2. In Part-A, each					•		and I	'art-	B)					
		3. Answer ALL	_						t-B							
				,	~		RT-A	-								
					_	pulso	-									
		nswer ALL the f									`	5 X 2	= 10)M)	CO	BL
	•	hat is the physic	•			of a	cur	lof	a ve	ctor	?				CO1	L1
b)	De	efine Absorption	coeffic	ient.											CO2	L1
•		hat is Magnetic	•												CO3	L1
d)	Ex	plain Spontane	ous em	issic	n a	nd S	Stim	ulate	ed e	miss	sion	1			CO4	L2
e)	WI	hat is the use of	f a Bime	etalli	c St	rip?									CO5	L2
							RT-B	-			•	- 10	60.1			
		Answer five questi	ions by cl	100S11	ng or	ie qu	estio	n tro	m ea	ch ui	nit (5	x 12	= 60			ъ.
						LINI	IT–I							Marks	СО	BL
2	a)	Explain Inertia	al and N	Jon-	Iner			mas	of i	·ofo	renc	-Δ		8M	CO1	L2
۷.	b)	Discuss abou						11103	01 1	CICI	CIIC			4M	CO1	L2 L3
	D)	Discuss abou	t Const	siva	live		R							7171	COT	LS
3	a)	Outline Keple	r'e Law	e an	alita									61/1	CO1	
٥.	a) b)	Derive F=-gra		s qu	anto	alive	τιy.									
	D)	Delive i –-gra	iu v.			UNI	T 11							Olvi	CO1	L3
1	a)	What is Reve	rharatio	n ar					an ti	mΔ				414	CO2	1.0
ᅻ.	b)	Summarize									a r	nd t	hoir	7171	CO2	LZ
	D)	remedies	uie ia	Clors	a	1160	ung	Λ(Jour	otics	aı	iu t	ii i C ii	8M	CO2	12
		Tomodico				C	R							Oivi	002	LZ
5	a)	Explain the p	roducti	on o	f UI			es h	v M	agn	eto	Stric	ction			
Ο.	u,	method.	roddott	011 0		uuu	, O i ii c	JO 10	y .v.	ug		Othic	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6M	CO2	L2
	b)	How Non	Destru	ctive	Т	esti	na	Pu	lse	ec	ho	SVS	tem			
	,	Transmission					J					,		6M	CO2	L3
						UNI	T–II									
6.	a)	Outline Loren	ıtz metl	nod [·]	to d	lete	rmir	e th	ne Ir	nterr	nal f	ield	of a			
		dielectric.												6M	CO3	L3

Code: 20AC24T b) Explain Electronic Polarization in dielectrics. 6M CO3 L2 7. a) What is the Origin of Magnetic Moment? Explain. 6M CO3 L2 b) What are the differences between Soft and Hard magnetic materials? 6M CO3 L2 UNIT-IV 8. a) What are the Characteristics of Lasers 4M CO4 L2 b) Explain the Construction and Working of Ruby Laser. 8M CO₄ L₂ OR 9. a) What is the Basic Principle of Optical Fiber? Explain 4M CO4 L2 b) Explain the Propagation of signal through optical fiber and expressions for Acceptance derive the Angle and Numerical Aperture. 8M CO4 L2 **UNIT-V** 10. a) What are the different types of sensors and their applications? 6M CO5 L2 b) Explain the working of Strain and Pressure sensors. 6M CO5 L2 OR 11. a) How Fiber Optic Temperature Sensor works? 6M CO5 L3

b) What is Hall effect? and How Hall Effect Sensor works?

*** End ***

6M CO5 L3

Н	lall Ticket Number :			
Co	de: 20AC21T	R-20		
	I B.Tech. II Semester Supplementary Examinations Decer	nber 2023		
	Differential Equations and Vector Calcul	lus		
M	(Common to all Branches) ax. Marks: 70	Time: 3 H	Ours	
7010	**************************************	111116.511	0013	
Not	te: 1. Question Paper consists of two parts (Part-A and Part-B)			
	2. In Part-A, each question carries Two marks.3. Answer ALL the questions in Part-A and Part-B			
	PART-A			
4 4	(Compulsory question)	3.4. \		
1. Answ	ver ALL the following short answer questions $(5 \times 2 = 10)$	JM)	CC) BL
	Find the particular integral of $\begin{pmatrix} \frac{1}{2} & $		1	_
b) V	Vrite the second order Legendre's Linear Equation form		2	
c) S	Solve p-q=1		3	3 2
d) F	Find curl F at the point (1,2,3) given $F = \frac{r = 3u = tion f^2 rm}{(x^2yzt + xy^2z = f^2)}$	+ xyzzī;)	3 4 4	1 3
e) S	State Gauss Divergence Theorem		5	5 3
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit (5 x 12		00	DI
	LINIT	Marks	CO	BL
2	Colvo (4014		
2.	Solve $\left(\sum_{z>2x} = \frac{1}{z} \left[\sum_{ezx} \frac{ \mathbf{UNIT-I} }{ \mathbf{SIR} ^{2x} + x^2} \right]$	12M	1	3
3.	$ \begin{array}{ccc} OR \\ P^2 & OR & O \\ P^2 & OR & O \end{array} $			
3.	Solve $(D^2 + 3D + 2)y = e^{-x} + x^2 + \cos x$	12M	1	3
	UNIT-II			
4.	Solve $\frac{d^2y}{dx^2} + -2\frac{dy}{dx} - 4\frac{1}{2}\frac{1}{2}\log x$	101/		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12M	2	3
5.	An uncharged con en OR C is charged	by		
Э.	applying an a m f Estint	Dy ICO		
	applying an e. m.f $\frac{Es}{\sqrt{LC}}$.through leads of self-inductan	b a		
	L and negligible resistance, prove that at any time t, t	ne		
	charge on one of the plates is $\frac{t^2C}{2}\left\{\sin\frac{t}{\sqrt{LC}}-\frac{t}{\sqrt{LC}}\cos\frac{t}{\sqrt{LC}}\right\}$	12M	2	3
	UNIT-III			
6. a)) Form the partial differential equation by eliminati	ng		
,	arbitrary functions f and g from $z = f(x+at) + g(x-at)$	6M	3	3
b)) Identify the appropriate form and solve $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	6M	3	3

Code: 20AC21T

Using the metho Using the methodara paragion of variables solve $3 \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0, u(x, 0) = 4e^{-x}$ 7.

$$3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0, u(x, 0) = 4e^{-x}$$

12M

3 3

8. a) Find the directional derivative **III** point p(1,2,3)in the direction of the line PQ.

Where Q is the point (5,0,4)

6M

3

b) Find div F^{s} in F^{out} (5, (64) and F^{out} in F^{out} (84) F^{out} in F^{out} (84) F^{out} in F^{out} (84) F^{out} in F^{out} (84) F^{out} in F^{out} in

6M 3

9. so, find its scalar potential

12M

3

UNIT-V Using Green's theorem. Evaluate 10. where C is the plane triar and enclosed by the lines

$$y = 6$$
, $x = \frac{\pi}{2}$ and $y = \frac{2x}{\pi}$

12M

3

OR

Apply stokes theorem to evaluate $\int_{c}^{c} (dx + zdy + xdy) dz$, where C is the curve of intersection of $\frac{z}{x^2} + \frac{z}{y^2} + \frac{z}{z^2} = \frac{z^2}{a^2}$ 11. and x + z = a

3

*** End ***

	Hall Ticket Number :			
Į.	Code: 20A322T	R-20		
	I B.Tech. II Semester Supplementary Examinations December	2023		
	Engineering Graphics & Design			
	(Mechanical Engineering) Max. Marks: 70	me: 3 H	OL IFS	
	**************************************	1116. 511	0013	
	UNIT-I	Marks	СО	BL
1	. A hexagonal pyramid of base side 30 mm and axis 60 mm is			
	lying on a slant edge on the HP with the axis is inclined at 200			
	to VP. Draw its projections.	14M	CO1	L2
	OR			
2	2. A pentagonal prism, side of base 25mm and axis 50mm long, rests with one of its edges on HP such that the base containing that edge makes an angle of 30° to HP and its axis is inclined at 30° to VP. Draw its projections. UNIT-II		CO1	L2
3	A cylinder of base diameter 50 mm and axis 70 mm is lying on a generator on the HP with its axis parallel to the VP. It is cut by an auxiliary inclined plane inclined at 30° to the HP passing through a point on the axis 30 mm from one of its ends. Draw its sectional top view and obtain true shape of the section.		CO2	L3
	OR			
4	I. A hexagonal pyramid of 25 mm edge of base and axis 50 mm long is resting on its triangular face in the HP with its axis parallel to the VP. It is cut by a section plane perpendicular to the HP and inclined at 30° to VP, and passing through a point on the axis 20 mm from the base. Draw the top view, sectional front view and true shape of the section when the			
	apex is removed.	14M	CO2	L3
	UNIT-III			
5	A triangular prism, side of base 30 mm and height 40 mm, stands on the HP on its base with a rectangular face perpendicular to the VP. It is cut by a plane perpendicular to the VP, inclined at 30° to the HP and passing through a point 20 mm above the base along the axis. Draw the development of the lower portion of the prism. OR		CO3	L3
6			CO3	L3

Code: 20A322T

UNIT-IV

7. a) Draw the isometric projection of cone of base diameter 50 mm and altitude 70 mm when the base is on HP.

6M CO4 L2

b) Draw the isometric projection of a cylinder of 80 mm diameter and 100 mm long with a 20 mm coaxial square hole. The cylinder is lying on HP with its axis parallel to VP and the sides of hole making an angle of 45° with HP.

8M CO4 L2

 OR

8. A pedestal consists of a square slab, side of base 60 mm and thickness 20 mm, surmounted by a frustum of a square pyramid, side of base 40 mm, that at top 20 mm and height 60 mm, which is surmounted by a square pyramid having side of base 20 mm and height 40 mm. All three solids are coaxial and are similarly situated. Draw the isometric view of the pedestal.

14M CO4 L3

UNIT-V

9. Draw the front view, top view and left side view for the following figure. (Dimensions are in mm).

14M CO₅ L₄

10. Three views of an object are shown in figure. Make an isometric drawing of the object. (Dimensions are in mm).

14M CO5 L4