\square
Code: 20A224T
| B.Tech. || Semester Supplementary Examinations February 2023

Electrical Circuits and Technology

(Electronics and Communication Engineering)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) Explain the conversion of star to delta and vice-versa
b) Define frequency and amplitude
c) What are the conditions for symmetry and reciprocity in terms of Y parameters
d) What is a back EMF and give its expression.
e) What is the importance of OC and SC tests

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) For the circuit shown in figure find the loop currents.

b) Find the equivalent resistance between the terminals A abd B of the circuit shown.

OR
3. a) In a series RLC circuit, $R=6$ ohms, $L=2 H, C=2 F$. A DC voltage of 50 V is applied at $\mathrm{t}=0$. Obtain the expression for $\mathrm{i}(\mathrm{t})$ using differential equation approach.
b) Explain the procedure of finding $i(t)$ for a series RL circuit with DC input.

UNIT-II

4. a) What are the advantages of AC supply?
b) Find the average and RMS value of the signal shown.

OR
5. a) In a resonant circuit show that the resonant frequency is the geometric mean of two half power frequencies.

6M
b) A series RLC circuit has the following parameters: $R=17 \quad, L=38 \mu \mathrm{H}$, and $C=44 \mu \mathrm{~F}$. Calculate the resonant frequency. And under resonant condition, calculate current, power, and voltage drops across various elements, if the applied voltage is 70 V .

UNIT-III

6. a) For the two port network shown obtain Z parameters.

b) Explain the relation between Z, Y and h parameters.
$6 \mathrm{M} \quad 3 \mathrm{~L} 3$
6M
3 L2

6 M 3 L3
6 M 3 L2

UNIT-IV

8. a) Explain the principle of operation of DC generator and explain its characteristics.
b) Derive the EMF equation of DC generator and list out the applications of DC generator.

OR

9. a) Explain the operation and Characteristics of DC Shunt Motor.
b) Explain the speed control methods of DC motor.

UNIT-V
10. a) Explain the constructional features and operation of a transformer.
b) What is voltage regulation of a transformer? Derive the conditions for maximum and zero voltage regulation in a transformer

OR
11. a) Derive the expression for a Torque of a three phase induction motor

6M
6M
b) Explain the Brake test on three phase induction motor.

Code: 20A421T

| B.Tech. || Semester Supplementary Examinations February 2023

Electronic Devices and Circuits

(Electronics and Communication Engineering)

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$
a) Define biasing and mention the types of biasing
b) Draw the enhancement and depletion mode characteristics of MOSFET
c) Compare input impedance and output impedance in CE and CB configurations
d) Draw the symbols of N -Channel and P-Channel MOSFET
e) Draw the SCR characteristics

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Sketch a voltage divider bias circuit using an npn transistor and explain the analysis procedure
b) Discuss the advantages and disadvantages of the three types of biasing circuits

OR

3. a) A base bias circuit has $\mathrm{Vcc}=20 \mathrm{v}$, $\mathrm{Rc}=5.6 \mathrm{k}, \mathrm{R}_{\mathrm{B}}=270 \mathrm{~K}$ and $\mathrm{VC}_{\mathrm{C}}=10 \mathrm{v}$. Determine the transistor hfe value. Calculate the new VC_{C} level when a transistor with hfe $=40$
b) Discuss the thermal stability of transistor bias circuit with regard to ICBo and VBE. State the approximations for the variation in VBE and ICBo with temperature changes.

UNIT-II

4. a) Sketch drain and transfer characteristics for an N-Channel depletion MOSFET and explain
b) Analyze the voltage divider bias circuit using MOSFET 6M
OR
5. a) Explain the construction and operation of N -channel JFET with the help of drain and transfer characteristics. 6M
b) A JFET self-bias circuit has $\mathrm{VDD}=30 \mathrm{v}, \mathrm{RD}=4.7 \mathrm{~K}, \mathrm{Rs}=820$ and $\mathrm{Rg}-1 \mathrm{M}$. calculate the VDs 6M
UNIT-III
6. a) Explain the practical single stage amplifier using $C E$ configuration 6M
b) What is the advantage of h-parameter model? Explain the transistor h-parameter model in detail 6M
OR
7. a) Comparison of $C E, C B$ and $C C$ configurations 6M
b) Calculate Zi , Zo and Av for a CE circuit with the following quantities $\mathrm{R} 1=18 \mathrm{~K}, \mathrm{R} 2=8.2 \mathrm{~K}, \mathrm{Rc}=5.6 \mathrm{~K}$, $\mathrm{RE}=2.7 \mathrm{~K}$, RL=68 K , hie $=1 \mathrm{~K}$, hfe $=100$, hoe $=1.67 \mu \mathrm{~s}$ 6M
UNIT-IV
8. a) Explain the small signal model of JFET 6M
b) Explain the small signal model of MOSFET 6M
OR
9. a) Construct and Explain the common drain amplifier using FET 6M
b) Construct and Explain the common source amplifier using FET 6M
UNIT-V
10. a) Explain the operation of photodiode 6M
b) Explain the operation of LED 6M
OR
11. a) Explain the operation of SCR with characteristics 6M
b) Explain the operation of Varactor diode 6M
\square
Code: 20AC23T
| B.Tech. || Semester Supplementary Examinations February 2023

Chemistry

(Common to EEE, ECE and AI\&ML)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ Co | Blooms |
| :---: |
| Level |

a) Explain ion-selective electrodes and their applications. CO1 L2
b) Differentiate primary batteries and secondary batteries. CO2 L2
c) Outline the preparation of Buna-S rubber $\mathrm{CO} \quad \mathrm{L4}$
d) State the Beer Lambert law and define all terms in it. CO4 L1
e) Explain molecular machines with TWO examples.

CO5 L2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Define is single electrode potential. Derive Nernst equation for the determination of single electrode potential.
b) Differentiate Galvanic cell and Electrolytic cell.

6M CO1
$6 \mathrm{M} \mathrm{CO1}$

OR

3. a) What is galvanic cell? Explain the determination EMF of a galvanic cell.
b) Explain the construction, working and uses of glass membrane electrode.

6M CO1 L2

UNIT-II

4. a) Describe the construction, working and applications of dry cell.
b) What are fuel cells? Discuss the classification and merits of fuel cells.

6M CO2 L2

6M CO2 L4

OR

5. a) Discuss the construction, working and applications of Zn -air battery.
b) Illustrate the construction working and applications of $\mathrm{H}_{2}-$ O_{2} fuel cell.

6M CO2

6M CO2 L4

UNIT-III

6. a) Differentiate thermoplastics and thermo settings.
$6 \mathrm{M} \mathrm{CO3}$
b) Explain the preparation and uses of Bekalite.

6 M CO 3

OR

7. a) Differentiate addition polymerization and condensation polymerization..

6M CO3
b) Explain the conduction mechanism in poly aniline.

6 M CO

UNIT-IV

8. Describe the working principle of Thin layer chromatography (TLC)? Write its applications

OR

9. a) Discuss the principle involved in pH metry and its applications
b) Explain the working principle and applications of UV-Vis spectroscopy

6M CO4 L2

6M CO4 L2

UNIT-V

10. a) Explain Catenanes as artificial molecular machines

6 M co5
b) Describe the linear motion in Rotaxanes
$6 \mathrm{M} \mathrm{CO5}$

OR

11. Explain about each of the following
a) Cyclodextrin based molecular switches
b) Displacement switching

12M CO5 L2
\square

Code: 20AC21T

| B.Tech. || Semester Supplementary Examinations February 2023

Differential Equations and Vector Calculus

(Common to all Branches)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$)

CO
CO1
a) Find the P.I of $\left(D^{2}-2 D+4\right) y=e^{x} \cos x$

b) Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x$

CO2
c) Find the partial differential equation of all planes passing through the origin.
d) Find $\nabla\left(\nabla \cdot \frac{\bar{r}}{\mathrm{r}}\right)$
e) State Stokes theorem.

CO5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
Marks CO

UNIT-I

2. Solve $\left(D^{2}-4 D+4\right) y=8 x^{2} e^{2 x} \sin 2 x$.

OR

3. Solve, by the method of Variation of Parameters, $y^{\prime \prime}-2 y^{\prime}+y=e^{x} \log x$

12M CO1

UNIT-II

4. In an L-C-R circuit, the charge q on a plate of a condenser is given by $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=E \sin p t$. The circuit is tuned to resonance so that $p^{2}=1 / L C$. If initially the current i and the charge q be zero, show that, for small values of R / L, the current in the circuit at time t is given by ($\mathrm{Et} / 2 \mathrm{~L}$) sin pt .
5. Solve $(2 x-1)^{2} \frac{d^{2} y}{d x^{2}}+(2 x-1) \frac{d y}{d x}-2 y=8 x^{2}-2 x+3$

12M CO2

UNIT-III

6. a) Form the partial differential equation by eliminating the arbitrary function from $\phi\left(\frac{y}{x}, x^{2}+y^{2}+z^{2}\right)=0$.

6M CO3
b) Solve the partial differential equation $\frac{\mathrm{p}}{\mathrm{x}^{2}}+\frac{\mathrm{q}}{\mathrm{y}^{2}}=\mathrm{z}$.

6M CO3

OR

7. Use Separation of Variables to solve $4 u_{x}+u_{y}=3 u_{\text {with }} u(0, y)=3 e^{-y}-e^{-5 y}$.

12M CO3

UNIT-IV

8. a) Find the values of a and b so that the surfaces

$$
a x^{2}-b y z=(a+2) x \text { and } 4 x^{2} y+z^{3}=4
$$

may intersect orthogonally at the point $(1,-1,2)$.
6M co4
b) Show that $\frac{\bar{r}}{r^{3}}$ is solenoidal.

6M CO4
9. a) Find constants a, b, c so that the vector $\overline{\mathrm{A}}=(\mathrm{x}+2 \mathrm{y}+\mathrm{az}) \overline{\mathrm{i}}+(\mathrm{bx}-3 \mathrm{y}-\mathrm{z}) \overline{\mathrm{j}}+(4 \mathrm{x}+\mathrm{cy}+2 \mathrm{z}) \overline{\mathrm{k}}$ is irrotational. Also find ϕ such that $\overline{\mathrm{A}}=\nabla \phi$
b) Prove that div curl $\bar{f}=0$.

6M CO4

UNIT-V

10. Evaluate $\iint_{\mathrm{s}} \overline{\mathrm{F}} \cdot \overline{\mathrm{n}} \mathrm{ds}$ where

$$
\overline{\mathrm{F}}=12 \mathrm{x}^{2} \mathrm{y} \overline{\mathrm{i}}-3 \mathrm{y} \mathrm{z} \overline{\mathrm{j}}+2 \mathrm{z} \overline{\mathrm{k}} \text { and } \mathrm{S} \text { is the portion of }
$$

the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$ included in the first octant.
12M CO5

OR

11. Verify Green's theorem for

$$
\int_{c}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right] \text { where } c \text { is the region }
$$

bounded by $\mathrm{x}=0, \mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=1$.
12M CO5

