\square

Code: 20A224T

| B.Tech. I| Semester Supplementary Examinations December 2023

Electrical Circuits and Technology

(Electronics and Communication Engineering)
Max. Marks: 70

Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) Determine the initial conditions of inductor and capacitor shown in the circuit.

CO1 L3
b) Define bandwidth and the impact of resistance on bandwidth.

CO2 L2
c) Express the symmetric and reciprocity condition of a network in terms of transmission parameters.

CO3 L2
d) Mention the merits and demerits of electric braking.

CO4 L2
e) A 3-phase, 50 Hz Squirrel cage induction motor runs at 4% slip. What will be the frequency of rotor currents?

CO5 L2
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL

UNIT-I

2. a) Find the current in 2 ohm resistor of the Fig. shown below using Source Transformation

6M CO1 L3
b) For the given network, a steady state is reached with the switch K open. At $\mathrm{t}=0$, the switch K is closed. Find the current $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$.,

3. a) Find the current through 8 ohm resistor in the circuit shown below using Mesh analysis

b) For the circuit given in figure steady-state conditions are reached for the switch K in position ' 1 '. At $\mathrm{t}=0$, the switch is changed to position 2. Use the time domain method to determine the current through the inductor for all $t>0$.

UNIT-II
6M CO1 L4
$6 \mathrm{M} \mathrm{CO2}$ L3

6M CO2 L3

OR

5. a) An RLC series circuit has a current which lags the applied voltage by 45 . The voltage across the inductance has a maximum value equal to twice the maximum value of voltage across the capacitor. Voltage across the inductance is $300 \sin (1000 t)$ and $R=20 \mathrm{~W}$. Find the value of inductance and capacitance.
b) A series RLC circuit is connected across a variable frequency supply and has $R=12$ ohms, $L=1 \mathrm{mH}$ and $C=1000$ PF. Calculate resonant frequency, Q factor and cut of frequencies.
$6 \mathrm{M} \mathrm{CO2}$ L3

UNIT-III

6. a) Express h parameters in terms of admittance parameters for a generalized network.
b) Find the transmission parameters for the two-port network shown in Figure.

OR
7. a) Find the h parameters of the network in figure. Invistigate whether the netwok is symmetrical and reciprocal.

b) The following measurements were made on a two-port resistive circuit: With port 1 open, $V 2=15 \mathrm{~V}, V 1=10 \mathrm{~V}$, and $\mathrm{I}_{2}=30 \mathrm{~A}$; with port 1 short-circuited, $\mathrm{V} 2=10 \mathrm{~V}, 12=4$ and $1_{1}=-5 \mathrm{~A}$. Calculate the z parameters.

UNIT-IV

8. a) Explain the significance of back EMF of a DC motor. Derive the torque equation of a $D C$ motor.
b) A 4-pole, 220 V shunt motor has 540 lap-wound conductors. It takes 32 A from the supply mains and develops output power of 5.595 kW . The field winding takes 1 A . The armature resistance is 0.09 and the flux per pole is 30 mWb . Calculate (i) the speed and (ii) the torque developed in N-m.

OR

9. a) Draw and explain the speed-torque characteristics DC shunt motor. Write the applications of it. 6M CO4 L2
b) A 250 volt DC shunt motor has armature resistance of0.25 ohm , on load it takes an armature current of 50 A andruns at 750 rpm . If the flux of motor is reduced by 10%without changing the load torque, find the new speed of themotor.
6M co4 L3
UNIT-V10. a) Discuss the effect of variations of frequency and voltage oniron loss. How will you minimize the hysteresis and eddycurrent loss that occur in a transformer?
b) A $100 \mathrm{kVA}, 2000 / 200 \mathrm{~V}, 50 \mathrm{~Hz}$ single phase transformer has an impedance drop of 10% and resistance drop of 5%. Calculate the (i) regulation at full load 0.8 pf lagging and (ii) value of pf at which regulation is zero.

OR

11. a) Derive an expression of rotor frequency in terms of main supply frequency and slip.
b) A 3-phase, Slip-ring, induction motor with star-connected rotor has an induced e.m.f of 120 Volts between slip-rings at standstill with normal voltage applied to the stator. The rotor winding has a resistance per phase of 0.3 Ohm and standstill leakage reactance per phase of 1.5 Ohm .
6M CO5 L2

$$
{ }_{* * *} \text { End *** }
$$

\square

Code: 20A421T

| B.Tech. || Semester Supplementary Examinations December 2023

Electronic Devices and Circuits
(Electronics and Communication Engineering)

Max. Marks: 70

Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) Explain thermal stability.
b) Why we call BJT as a current Controlled Device?
c) What is thermal runaway?
d) What is pinch-off voltage? Give its expression CO3 L3
e) What is meant by Intrinsic standoff ratio and what is its typical value? CO5 L1

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL

UNIT-I

2. a) With neat circuit explain how transistor acts as an amplifier
b) With neat circuit diagram, explain the principle of self-biasing of BJT.

OR

3. a) In a Silicon transistor circuit with a fixed bias, $\mathrm{VCC}=9 \mathrm{~V}$, $R C=3 K, R B=8 K, \beta=50, V B E=0.7 \mathrm{~V}$. Find the operating point 6M $\quad 1 \quad$ L1 and Stability factor.
b) What is the necessity of biasing circuits? Derive the expression for stability factor of self-bias circuit.

6M 2 L2

UNIT-II

4. a) Explain the construction, operation and characteristic behavior of JFET under various biasing conditions.
b) Draw and explain small-signal model of a MOSFET.
$6 \mathrm{M} \quad 4 \mathrm{~L} 2$

OR

5. Explain the constructional features of a Depletion mode Pchannel and Enhancement mode MOSFET and explain its basic operation.
UNIT-III6. a) Explain about power amplifiers and their features.6M$6 \mathrm{M} \quad 3 \quad$ L5b) Derive an expression for efficiency of class-A amplifier.OR
6. a) Compare between Class-A, Class-B and Class-C amplifiers.6M3 L2b) What are h-parameters, explain how they can be determinedfrom BJT characteristics.6M 4 L2
UNIT-IV
7. Derive the voltage gain, input admittance and input miller capacitance of CS amplifier using its high frequency
equivalent circuit.

12 M 5 L3

OR

9. Draw the circuit of source follower Amplifier and derive the expressions for AI, AV, Ri and Ro.

12M 4 L4

UNIT-V

10. a) With neat diagram explain the construction, working characteristics of UJT. Give its equivalent circuit.

6M 5 L5
b) With the help of V-I characteristics, explain SCR operation.

OR

11. Define tunneling phenomenon. Explain how tunnel diode operates under different operating conditions. In what way it is different from conventional diodes? Give the necessary energy level diagrams.

12M
$5 \quad$ L4
\square

Code: 20AC23T

| B.Tech. || Semester Supplementary Examinations December 2023

Chemistry
 (Common to EEE, ECE, and AI\&ML)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions (5 X $2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) Define electrolytic cell. Give any two examples. CO1 L1
b) What are primary batteries? Give two examples. CO2 L1
c) What are stereospecific polymers? Give examples. CO3 L1
d) Define electromagnetic spectrum. CO4 L1
e) What are molecular switches? Give two examples. CO5 L1

PART-B

Answer five questions by choosing one question from each unit (5 x $12=60$ Marks)
Marks CO BL

UNIT-I

2. a) Describe the construction and working of a Calomel electrode with neat sketch.

6M CO1 L2
b) Distinguish between electrochemical cell and electrolytic cell.

6M CO1 L2

OR

3. a) Discuss about polymer membrane electrode and give its significance.

6M CO1 L4
b) Discuss briefly about solid state ion-selective electrodes.

6M CO1 L4

UNIT-II

4. Discuss about the chemical composition and the respective cell reactions involved in Zinc- air battery. Give its challenges and applications.

12M CO2 L4

OR

5. Describe the working principle and construction of propane -oxygen fuel cell with neat sketch. Give its applications.

12M CO2 L2

UNIT-III

6. Discuss about the detailed preparation, properties, and applications of Bakelite.

OR

7. a) Discuss about coordination addition polymerization (Ziegler -Natta Catalysis) with suitable example. $6 \mathrm{M} \mathrm{CO3}$ L4
b) Give the preparation and applications of the following polymers. i) Nylon-6 ii) Buna-S $6 \mathrm{M} \mathrm{CO3} \mathrm{L2}$
UNIT-IV
8. a) Discuss about the principle and working of a gas chromatography with suitable example. 6 M CO4 L4
b) Describe the working principle and applications of UV- Visible spectroscopy. $6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$
OR
9. Write short note on
i) pH metry
ii) Potentiometry
iii) Conductometry 12M CO4 L2
UNIT-V
10. a) What are artificial molecular machines? Explain with suitable examples. 6 M CO5 L2
b) Discuss about an autonomous light-powered molecular motor. 6 M CO5 L4
OR
11. a) Discuss about the systems based on Catenanes 6M CO5 L4
b) Discuss about the acid-base controlled molecular shuttle. 6 M co5 L4

Hall Ticket Number : \square
Code: 20AC25T
| B.Tech. || Semester Supplementary Examinations December 2023

Communicative English

(Common to EEE, ECE and AI\&ML)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) What is Hazlitt's reason when he sends his son to school? CO1 L2
b) Which lines are repeated in the poem "The Brook"? What do they mean? CO1 L2
c) What are the two dynasties mentioned in the story "The Death Trap"? L2
d) Explain the attitude of Yunus' mother towards the poor and the needy. CO1 L2
e) What are the two characteristics of modern language usages that are despised by George Orwell?

PART-B

Answer five questions by choosing one question from each unit (5 x $12=60$ Marks)

UNIT-I

2. Do you think that the pieces of advice given by William Hazlitt are still relevant? If yes, explain their relevance.

OR

3. a) Change the following statements into questions.
i. Students are learning their lessons.
ii. The tiger mauled the deer.
iii. He has spent a lot of time working on his computer.
iv. We won accolades for our performance.
v. The dog was playing with a bone.
vi. We have been going to college for three years.
b) Identify the parts of speech for the underlined words in the following sentences.
i. I ran fast but I missed the train.
ii. Barrowed garments never fit well.
iii. He is afraid of fireworks.

UNIT-II

4. Develop the following hints into a well - constructed paragraph:

Regular exercise - benefits both physically and mentally - improves health running, swimming and cycling strengthen us - plays crucial role in weight management - burns calories - builds muscle mass - reduces symptoms of stress - releases endorphins - contributes to sense of happiness - cures insomnia - long-term benefits - contributes to healthier life style.

OR

5. Describe the brook's journey before it flows through Phillip's farm.

UNIT-III

6. Justify the title of Saki's play "The Death Trap".

OR

7. a) Rearrange the following jumbled sentences below so as to have a well- written paragraph.
i. We should make sure we get this right.
ii. Second, it is crucial that a startup has a great team.
iii. Many people may be able to spin out great ideas but it is essential to have clarity on who would pay for our product and why.
iv. Finally, let's not forget about the funds. Money is the key factor because without it we can't run a business.
v. The success of a startup depends upon a committed, capable and experienced team.
vi. To sum up, a good product is the foundation on which we can form a successful business using the funds procured from various sources.
vii. Firstly, it is important to have a viable product.
b) Put the verbs in brackets in the correct form.
i. I \qquad never \qquad skiing. (try)
ii. Patel \qquad that historians have misinterpreted the period. (say)
iii. Sohail \qquad the silver medal in the sprint last year. (win)
iv. Dad can't answer the phone right now; he \qquad (drive)
v. If I \qquad early this morning, I would not have missed the bus. (wake up)

5M CO3 L3

UNIT-IV

8. How did the Grameen Bank help the impoverished women of Bangladesh?

OR

9. Prepare an analytical essay on the topic, "The Impact of Social Media in the Society."

UNIT-V

10. Correct the following sentences:
a) He climbed across the wall and ran until the main road.
b) Padma congratulated Tenzin for his promotion.
c) We must try harder to stop these people from destroying the nature.
d) Working in the lab for hours, my feet began to hurt.
e) One of my friend is coming today.
f) The people of the district are happy. Because a Medical College will be set up here in a year.
g) When I will arrive at the airport, I will call you.
h) Let us discuss about tomorrow's programme.
i) She returned back home and collapsed on the bed late at night.
j) I have gone out yesterday.
k) Though the machine was new, but it did not work.
l) The bag was very heavy that I could not carry it.

OR

11. What do Orwell's five examples have in common?
\square

Code: 20AC21T

| B.Tech. || Semester Supplementary Examinations December 2023

Differential Equations and Vector Calculus

(Common to all Branches)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ CO BL
a) Find the particular integral of (
b) Write the second order Legendre's Linear Equation form
c) Solve $p-q=1$

e) State Gauss Divergence Theorem

PART-B
Answer five questions by choosing one question from each unit (5x12=60 Marks) Marks CO BL

3. Solve $\left(D^{2}+3 D+2\right) y=e^{-x}+x^{2}+\cos x$

12M 1
3

UNIT-II

4. Solve ${ }_{x^{2}}^{2} \frac{d^{2} y}{d x^{2}}+-2_{x} \frac{d y}{d x}-4_{y}=x^{2}+2 \log x$

12M 23
OR
5. An uncharged con ${ }_{\text {din }}^{\text {en }} \underset{\text { ser of capacity }}{\mathbf{O R}} \mathrm{C}$ is charged by applying an e.m.f $\frac{E s, \overline{i n t}}{\sqrt{L C}}$.througl' leads of self-inductance L and negligible resistance, prove that at any time t, the charge on one of the plates is $\frac{\hat{k}^{C} C}{-\frac{2}{-}}\left\{\sin \frac{t}{\sqrt{L C}}-\frac{t}{\overline{\overline{L C}}} \cos \frac{t}{\overline{\overline{L C}}}\right\} \quad 12 \mathrm{M} \quad 2 \quad 3$

UNIT-III

6. a) Form the partial differential equation by eliminating arbitrary functions f and g from $z=f(x+a t)+g(x-a t)$
b) Identify the appropriate form and solve
 6M 3

OR

7. Using the metho jari aion of v ariables solve

$$
3 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0, \text { 'd of sel } u(x, 0)=4 e^{-x}
$$

UNIT-IV

 point $\mathrm{p}(1,2,3)$ in the direction $\begin{aligned} & f=x- \\ & F \\ & =x\end{aligned}$
Where Q is the point $(5,0,4)$
6M 43

$\mathrm{F}=\operatorname{grad}\left(x^{3}+y^{3}+{ }^{z 3}-3 x y z\right)$
6M 43 OR

 so, find its scalar potential

12M 4
3

UNIT-V

10. Using Grelgn's theoren. Evaluate $\int_{\underset{c}{\prime}(7)}$
where C is trle plane triar $\left.\operatorname{con}^{c} y-\sin x\right) d x+\operatorname{cosidy}$

$$
y=4, x=\frac{\pi}{2} \text { and } y=\frac{x}{\pi}
$$

12M 5

OR

11. Apply stokes theorem to evaluate $\iint_{c}\left(y_{2} d x+z d j,+x_{d z}\right)$ where C is the curve of intersection of $\begin{gathered}c \\ y_{2} \\ x^{2}+{ }_{y}{ }_{2}+{ }_{z}{ }^{2}=a^{2}{ }^{2}\end{gathered}$ and $x+z=a$
where C is tr $^{\text {le }}$ plane triar ${ }_{2 x}$ igl enclosied by the lines
