	Hall	Ticket Number :			
			R-	·20	
	Code	E: 20A521T I B.Tech. II Semester Supplementary Examinations Februar Data Structures through Python	ry 2023	3	
	Max.	(Common to CSE, AI&DS and AI&ML) . Marks: 70	Time:	: 3 Hou	rs
	Note:	 Question Paper consists of two parts (Part-A and Part-B) In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
		PART-A			
	^	(Compulsory question)		<u> </u>	וס
		er ALL the following short answer questions (5 X 2 = 10M) a for loop in python that prints even numbers from 0 to	100	CO	BL
		range function.	100,	CO1	L1
	•	ut the differences between an array and a list in Python.		CO2	L3
		is slicing in Python? Give Illustrations.		CO3	L0 L1
,		ut basic operations on list that can be performed in Python.		CO4	L3
,		the operations of Queues.		CO5	L5
-)		PART-B		000	20
	1	Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 =$	60 Mai	rks)	
			Marks	со	BL
		UNIT–I	Marks	со	BL
2	2. a)	UNIT-I Write a Python program to input n numbers and to	Marks	со	BL
2	2. a)			co CO1	BL L1
2	2. a) b)	Write a Python program to input n numbers and to reverse the set of numbers without using List structure. Write a Python program to find maximum element and	6M	CO1	L1
2	,	Write a Python program to input n numbers and to reverse the set of numbers without using List structure. Write a Python program to find maximum element and minimum element from the given List	6M		
	b)	Write a Python program to input n numbers and to reverse the set of numbers without using List structure. Write a Python program to find maximum element and minimum element from the given List OR	6M 6M	CO1 CO1	L1 L4
	b) 8. a)	 Write a Python program to input n numbers and to reverse the set of numbers without using List structure. Write a Python program to find maximum element and minimum element from the given List OR Explain about operations on Dictionaries in Python. 	6M 6M	CO1	L1
	b)	Write a Python program to input n numbers and to reverse the set of numbers without using List structure. Write a Python program to find maximum element and minimum element from the given List OR Explain about operations on Dictionaries in Python. Write about different loop control statements available	6M 6M 6M	CO1 CO1 CO1	L1 L4 L4
	b) 8. a)	Write a Python program to input n numbers and to reverse the set of numbers without using List structure. Write a Python program to find maximum element and minimum element from the given List OR Explain about operations on Dictionaries in Python. Write about different loop control statements available in python? Explain with suitable examples.	6M 6M 6M	CO1 CO1	L1 L4
Э	b) 8. a) b)	Write a Python program to input n numbers and to reverse the set of numbers without using List structure. Write a Python program to find maximum element and minimum element from the given List OR Explain about operations on Dictionaries in Python. Write about different loop control statements available in python? Explain with suitable examples. UNIT-II	6M 6M 6M	CO1 CO1 CO1	L1 L4 L4
Э	b) 8. a)	Write a Python program to input n numbers and to reverse the set of numbers without using List structure. Write a Python program to find maximum element and minimum element from the given List OR Explain about operations on Dictionaries in Python. Write about different loop control statements available in python? Explain with suitable examples. UNIT-II What type of parameter passing is used in Python?	6M 6M 6M	CO1 CO1 CO1 CO1	L1 L4 L4 L5
Э	b) 3. a) b) 4. a)	Write a Python program to input n numbers and to reverse the set of numbers without using List structure. Write a Python program to find maximum element and minimum element from the given List OR Explain about operations on Dictionaries in Python. Write about different loop control statements available in python? Explain with suitable examples. UNIT-II What type of parameter passing is used in Python? Justify your answer with sample programs.	6M 6M 6M	CO1 CO1 CO1	L1 L4 L4
Э	b) 3. a) b) 4. a)	Write a Python program to input n numbers and to reverse the set of numbers without using List structure. Write a Python program to find maximum element and minimum element from the given List OR Explain about operations on Dictionaries in Python. Write about different loop control statements available in python? Explain with suitable examples. UNIT-II What type of parameter passing is used in Python? Justify your answer with sample programs.	6M 6M 6M 6M	CO1 CO1 CO1 CO2	L1 L4 L4 L5
Э	b) 3. a) b) 4. a)	Write a Python program to input n numbers and to reverse the set of numbers without using List structure. Write a Python program to find maximum element and minimum element from the given List OR Explain about operations on Dictionaries in Python. Write about different loop control statements available in python? Explain with suitable examples. UNIT-II What type of parameter passing is used in Python? Justify your answer with sample programs. Write a Python function that prints all factors of a given	6M 6M 6M 6M	CO1 CO1 CO1 CO1	L1 L4 L5 L1
3	b) 8. a) b) 1. a) b)	Write a Python program to input n numbers and to reverse the set of numbers without using List structure. Write a Python program to find maximum element and minimum element from the given List OR Explain about operations on Dictionaries in Python. Write about different loop control statements available in python? Explain with suitable examples. UNIT-II What type of parameter passing is used in Python? Justify your answer with sample programs. Write a Python function that prints all factors of a given number. OR	6M 6M 6M 6M 6M	CO1 CO1 CO1 CO2 CO2	L1 L4 L5 L1 L5
3	b) 3. a) b) 4. a)	Write a Python program to input n numbers and to reverse the set of numbers without using List structure. Write a Python program to find maximum element and minimum element from the given List OR Explain about operations on Dictionaries in Python. Write about different loop control statements available in python? Explain with suitable examples. UNIT-II What type of parameter passing is used in Python? Justify your answer with sample programs. Write a Python function that prints all factors of a given number.	6M 6M 6M 6M 6M 6M	CO1 CO1 CO1 CO2	L1 L4 L5 L1

		Code:	20A521T	
	UNIT–III			
6.	Explain inheritance in Python with an example.	12M	CO3	L2
	OR			
7. a)	Write a Python program that overloads + operator, to			
	add two objects of a class.	6M	CO3	L5
b)	How to create, raise and handle user defined			
	exceptions in Python	6M	CO3	L5
	UNIT–IV			
8.	Describe the concept of stack and its implementation			
	using linked list in Python.	12M	CO4	L2
	OR			
9.	Describe the operations performed in Single linked list.	12M	CO4	L6
	UNIT–V			
10. a)	Construct an AVL tree with the following values:			
	{ 50 , 20 , 60 , 10, 8 , 15 , 32 , 46 , 11 , 48 }	6M	CO5	L3
b)	Construct a Binary search tree with following key			
	elements: 15, 10, 20, 8, 12, 16, 25	6M	CO5	L6
	OR			
11. a)	Explain Binary tree with an example.	4M	CO5	L3
b)	Construct a max heap for the following :			
	{11, 9, 10, 8, 5, 2, 4}	8M	CO5	L6
	*** End ***			

	Hall Ticket Number :														
													R-2	0	
	Code: 20A324T I B.Tech. II Ser	nest	er S	aqu	lem	ent	arv	Exar	ninc	atior	ns Fe	bruc	Irv 2023		
				•••			g Ďr						,		
	Many Markey 70	(C	omn	non	to C	:SE, ,	AI&E)S ar	nd A	1&M	L)		Time et 0		
	Max. Marks: 70				*	****	****						Time: 3	HOU	S
													Marks	СО	Blooms
			Γ		NIT	•	_						Marko	00	Level
1	A fixed point is 75m	m fr	om				iaht	lino	Dr		tha				
1.	of a point P moving						-								
	straight line is equa			-											
	the curve.					_		-		1 -			14M	C1	L1
					OR										
2.	Draw a cycloid gi	ven	the	e di	iamo	eter	of	a	rollir	ng	circl	e as	5		
	d=30mm. Draw a									•					
	curve.												14M	C1	L1
				U	NIT	-11									
3.	a) The point A is c	n H	.P.	and	40	mm	in f	ront	of \	V.P.	An	othei	-		
	point B is on V.F							•		•					
	views makes ar		•								-	-			
	their top views r the point B from			in a	ngie	• OI -	30°.	FIN	a in	e ai	stan	ice o	7M	C2	
	-			tho	foll	owi	na r	oint	o in	thir	d		7 1 1 1	62	L2
	b) Draw the project quadrant when		5 01	uie			ng F		.5 111	um	u				
	i. Point A lies in		H.F	, ar	nd 2	2mi	m av	wav	fror	n th	e V	P.			
	ii. Point B lies ir							•							
	iii. Point C lies							•					•		
	V.P												7M	C2	L2
					OR										
4.	The top view of a 7	5mr	n lo	ng l	line	AB	me	asui	es	65m	nm,	while	;		
	the length of its fron	t vie	w is	s 50i	mm	. It's	one	e en	d A	is in	the	H.P			
	and 12mm in front						•	•			f Ae	3 and			
	determine its inclina	atior	IS W				. an	d th	εv.	Ρ.			14M	C2	L2
-	A				NIT-						- 1 0	^			
5.	A regular hexagona from V.P. and 50m	•										-			
	V.P. and perpendic														
	plane.		0					- P	5,00				14M	C3	L3

14M

14M

C3

C4

C4

L3

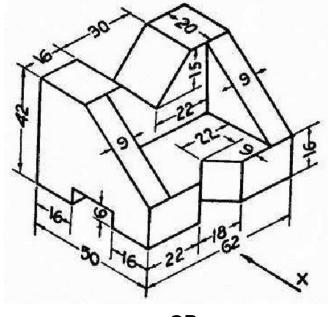
L4

L2

OR

6. A regular pentagon of 30mm side is resting on one of its edges on H.P. which is inclined at 45° to V.P. Its surface is inclined at 30° to H.P. Draw its projections
14M

UNIT–IV


 A triangular prism of base side 45mm and length of axis 75mm has a corner in the H.P. the face opposite to that corner makes 50^o to the H.P. while the axis of the solid makes 30^o to the V.P. obtain the two views of the solid.

OR

8. A hexagonal pyramid, base 25mm side and axis 55mm long, has one of its slant edges on the ground. A plane containing that edge and the axis is perpendicular to the H.P. and inclined at 45^o to the V.P. Draw its projections, when the apex is nearer the V.P. than the base.

UNIT–V

9. Draw the front view, top view and left side view of the object shown in figure. (All dimensions are in mm).

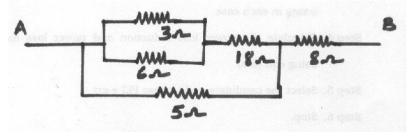
14M C5 L3

L1

OR

Draw the isometric view of a hexagonal prism TWO possible positions, with side of base 25mm and axis 60mm long, The prism is resting on its base on H.P. with an edge of the base parallel to V.P. Use the box method.
 14M C5

*** End ***


	Hall Ticket Number :			
L C	ode: 20AC22T	R	-20	
	I B.Tech. II Semester Supplementary Examinations Febru	ary 202	23	
	Applied Physics	·		
	(Common to CSE and AI&DS)		• • •	
Μ	ax. Marks: 70 ********	Time	e: 3 Hou	Jrs
N	te: 1. Question Paper consists of two parts (Part-A and Part-B)			
	2. In Part-A, each question carries Two mark.			
	3. Answer ALL the questions in Part-A and Part-B			
	<u>PART-A</u> (Compulsory question)			
1. Ansv	ver ALL the following short answer questions $(5 \times 2 = 10M)$		СО	BL
	at are the necessary conditions to get clear and distinct interfe	erence		
	ges?		1	L1
	nat is dielectric polarization?		2	L1
	fine total internal reflection.		3	L1
	ite any two applications of semiconductors.		4	 L1
	ate Meissner's effect.		5	L1
			5	L1
	PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 12	= 60 Ma	rks)	
		Marks	CÓ	BL
	UNIT–I			
2.	a) Define interference. What do you meant by coherent			
	sources?	4M	CO1	L1
	b) Obtain conditions for maxima and minima due to			
	interference of reflected light in thin films.	8M	CO1	L2
	OR			
3.	a) What are (i) quarter wave plate and (ii) half wave plate?	4M	CO1	L1
	b) Describe Nicol Prism and explain how it acts as an			
	analyzer.	8M	CO1	L3
	UNIT-II			
4.	a) Derive the relation between dielectric susceptibility			
	and polarizability.	4M	CO2	L3
	b) What is electronic polarizability. Derive an expression		002	20
	for electronic polarizability.	8M	CO2	L2
	OR	5101	002	LZ

			Code:	20AC22T	
5.	a)	Define magnetic flux density B, magnetic field strength H and magnetization M. How are they related with			
		each other?	4M	CO2	L3
	D)	Explain how substances are classified according to their magnetic behavior.	8M	CO2	L2
6.	a)	If $i = (3x^2 - 3yz)i + (3y^2 - 3zx)j + (3z^2 - 3xy)k$ then			
		find div 3.	4M	CO3	L3
	b)	Write Maxwell's equations in differential form and explain their physical significance.	8M	CO3	L2
_	,	OR			
7.		Classify the fibres on the basis of refractive index profile and on the basis of modes.	4M	CO3	L2
	b)	Define numerical aperture of a fibre and derive an expression for it. How numerical aperture is useful on optical fibres.	8M	CO3	L3
		UNIT–IV			
8.	a)	Distinguish between intrinsic and extrinsic semiconductors.	4M	CO4	L2
	b)	Explain classification of solids based on band theory. OR	8M	CO4	L2
9.	a)	Write short note on Drift and Diffusion currents.	4M	CO4	L1
	b)	Derive an expression for density of holes in intrinsic			
		semiconductors.	8M	CO4	L3
10.	a)	Write some applications of superconductors in various			
	,	fields.	4M	CO5	L1
	b)	Explain the BCS theory with key note of Cooper Pairs. Differentiate between type-I and Type-II			
		superconductors.	8M	CO5	L2
		OR			
11.		Write any four applications of nanomaterials.	4M	CO5	L1
	b)	With a neat diagram, explain mechanical ball milling process of synthesis of nanomaterials. Write advantages and disadvantages also.	8M	CO5	L2
		*** End ***		000	LZ

	Hall Ticket Number :											[
L	Code: 20A223T									J		R-20)
	I B.Tech. II Se	mest	er Sur	opler	nen	tarv	Fxo	min	atic	ns F	ebruc	$r_{\rm V}$ 2023	
			ectric	•								19 2020	
			Comn						-		g		
	Max. Marks: 70	,				****				,		Time: 3	Hours
	Note: 1. Question Pape	roon	viete of	two r				nd D	Part	B)			
	2. In Part-A, each			-				inu I	ai t-	D)			
	3. Answer ALL	-						t-B					
		•				RT-A							
											(Com	pulsory qu	estion)
1.	Answer ALL the followin	g sho	rt answ	er que	estior	าร	(5	X 2 =	= 10	(N		CO	Blooms Level
a)	State cork screw ru	ıle?										1	1
b)	Draw the connection	on dia	agram	of S	winl	burn	e's	tesť	?			2	2
c)	How the copper los	ss va	ries w	ith p	owe	r fac	ctor	in a	trar	nsfoi	rmer?	3	1
d)	How P-N junction i	s forr	med ir	n a di	ode	?						4	1
e)	Write the classification	tion (of inst	rume	entsí	?						5	1
	Answer <i>five</i> questi	ons by	y choos	ing or		<u>RT-B</u> estio		m ea	ch u	nit (:	5 x 12 =	= 60 Marks)

		Marks	СО	BL
	UNIT–I			
2. a)	Three resistors R1, R2 and R3 are connected in series across			
	a constant voltage V. The voltage across R1 is 20V. The			
	power consumed by R2 is 25 W, R3=20hms. Find the voltage			
	V if the current is 5A?	6M	1	3
b)	Discuss about static and dynamic induced EMF?	6M	1	2
	OR			

3. Calculate the effective resistance of the following combination of resistances and the voltage drops across each resistance, when a voltage of 60V is applied between points A and B as shown in fig.

12M 1 3

			Code: 204	A223T	
		UNIT–II			
4.	a)	Derive the EMF equation of DC Generator?	6M	2	2
	b)	Explain the Brake test of DC motor?	6M	2	2
		OR			
5.		Explain the speed control methods of DC motor?	12M	2	2
		UNIT–III			
6.	a)	Explain the Brake test on three-phase induction motor?	6M	3	2
	b)	Discuss the principle of operation of three-phase			
		transformer?	6M	3	2
		OR			
7.	a)				
		impedance method?	6M	3	2
	b)	Explain the calculation of efficiency and regulation of			
		transformer?	6M	3	2
-		UNIT-IV			
8.	a)	Explain the operation of diode half-wave rectifier?	6M	4	2
	b)	Describe the diffusion process that takes place at the p-n			
		junction, and explain the presence of depletion region?	6M	4	2
_		OR			
9.	a)	Define			
		i) active ii) saturation and cut-off region in a transistor?	6M	4	2
	b)	Sketch characteristics of transistor CE configuration?	6M	4	2
4.0	、		014		
10.		Explain the principle of cathode ray tube?	6M	5	2
	b)	Explain about different types of Fuses?	6M	5	2
		OR			
11.	a)				
		day, a 200 W refrigerator used 24 hours per day, and a			
		125 watt water pump used 8hours per day. How much electrical energy used for a month (30days)?	9M	5	G
	h)		3M	-	3
	b)	Discuss the applications of CRO? *** End ***	SIVI	5	2

Hall Ticket Number :			
	R-	20	
Code: 20AC21T I B.Tech. II Semester Supplementary Examinations Februa Differential Equations and Vector Calculus	ry 2023	}	
(Common to all Branches) Max. Marks: 70 ********	Time:	3 Hours	
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 			
PART-A			
(Compulsory question) 1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$		СО	BL
a) Find the P.I of $(D^2 - 2D + 4)y = e^x \cos x$		CO1	L2
b) Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$		CO2	L3
 c) Find the partial differential equation of all planes passing throug origin. 	h the	CO3	L2
d) Find $\nabla \left(\nabla . \frac{r}{r} \right)$		CO4	L2
e) State Stokes theorem.		CO5	L3
PART-B			
Answer <i>five</i> questions by choosing one question from each unit $(5 \times 12 =$	60 Mar Marks	ks) CO	BI
UNIT–I			
2. Solve $(D^2 - 4D + 4)y = 8x^2e^{2x}\sin 2x$.	12M	CO1	L
OR			
3. Solve, by the method of Variation of Parameters,			
$y'' - 2y' + y = e^x \log x$	12M	CO1	L3
UNIT–II			
4. In an L-C-R circuit, the charge q on a plate of a			
condenser is given by $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = E\sin pt$. The			
circuit is tuned to resonance so that $p^2 = 1/LC$. If initially the current i and the charge q be zero, show that, for small values of R/L , the current in the circuit at time t is			
given by $(Et/2L) \sin pt$.	12M	CO2	L

Code: 20AC21T

OR

5. Solve
$$(2x-1)^2 \frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} - 2y = 8x^2 - 2x + 3$$

[UNIT-III]
6. a) Form the partial differential equation by eliminating the arbitrary function from $\oint \left(\frac{y}{x}, x^2 + y^2 + z^2\right) = 0$.
b) Solve the partial differential equation $\frac{p}{x^2} + \frac{q}{y^2} = z$.
b) Solve the partial differential equation $\frac{p}{x^2} + \frac{q}{y^2} = z$.
c) OR
7. Use Separation of Variables to solve
 $4u_x + u_y = 3u$ with $u(0, y) = 3e^{-y} - e^{-5y}$.
12M CO3
L3
(UNIT-IV)
8. a) Find the values of a and b so that the surfaces
 $ax^2 - byz = (a+2)x$ and $4x^2y + z^3 = 4$
may intersect orthogonally at the point $(1, -1, 2)$.
b) Show that $\frac{r}{r^3}$ is solenoidal.
9. a) Find constants a, b, c so that the vector
 $\overline{A} = (x+2y+az)\overline{i} + (bx-3y-z)\overline{j} + (4x+cy+2z)\overline{k}$ is
irrotational. Also find ϕ such that $\overline{A} = \nabla \phi$
b) Prove that div curl $\overline{f} = 0$.
Con
10. Evaluate $\iint_{x} \overline{F}.\overline{n} ds$ where
 $\overline{F} = 12x^2y\overline{i} - 3yz\overline{j} + 2z \overline{k}$ and S is the portion of
the plane $x + y + z = 1$ included in the first octant.
12M CO5
11. Verify Green's theorem for
 $\iint_{c} (3x^2 - 8y^2) dx + (4y - 6xy) dy]$ where c is the region
bounded by $x = 0$, $y = 0$ and $x + y = 1$.
12M CO5
L5