\square

Code: 20A521T

| B.Tech. || Semester Supplementary Examinations February 2023

Data Structures through Python
 (Common to CSE, Al\&DS and AI\&ML)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$

a) Write a for loop in python that prints even numbers from 0 to 100,
using range function.
b) List out the differences between an array and a list in Python. CO
c) What is slicing in Python? Give Illustrations.

CO3
CO4
CO5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Write a Python program to input n numbers and to reverse the set of numbers without using List structure.
b) Write a Python program to find maximum element and minimum element from the given List

OR

3. a) Explain about operations on Dictionaries in Python.

6M CO1
b) Write about different loop control statements available in python? Explain with suitable examples.

6M CO1

UNIT-II

4. a) What type of parameter passing is used in Python? Justify your answer with sample programs.
$6 \mathrm{M} \mathrm{co2}$
b) Write a Python function that prints all factors of a given number.

6M CO2

OR

5. a) What are global and local variables in Python? 6M CO2 L1
b) Explain about garbage collection in Python.

6 M CO 2
UNIT-III
6. Explain inheritance in Python with an example. 12 M CO 3L2

OR

7. a) Write a Python program that overloads + operator, to add two objects of a class.
6 M CO 3L5
b) How to create, raise and handle user defined exceptions in Python
6M CO3 L5

UNIT-IV

8. Describe the concept of stack and its implementation using linked list in Python.
$12 \mathrm{M} \mathrm{CO4} \mathrm{L2}$

OR

9. Describe the operations performed in Single linked list. 12 M CO4 L6

UNIT-V

10. a) Construct an AVL tree with the following values:
$\{50,20,60,10,8,15,32,46,11,48\} \quad 6 \mathrm{M}$ CO5 L3
b) Construct a Binary search tree with following key elements: 15, 10, 20, 8, 12, 16, $25 \quad 6 \mathrm{M}$ CO5 L6

OR

11. a) Explain Binary tree with an example. 4 M CO5 L3
b) Construct a max heap for the following :
$\{11,9,10,8,5,2,4\} \quad 8 \mathrm{M}$ CO5 L6

Engineering Drawing

(Common to CSE, AI\&DS and AI\&ML)
Max. Marks: 70

Time: 3 Hours

Marks CO
Blooms
Level

UNIT-I

1. A fixed point is 75 mm from a fixed straight line. Draw the locus of a point P moving such a way that its distance from the fixed straight line is equal to its distance from the fixed point. Name the curve.

OR

2. Draw a cycloid given the diameter of a rolling circle as $\mathrm{d}=30 \mathrm{~mm}$. Draw a normal and tangent at any point on the curve.

UNIT-II

3. a) The point A is on H.P. and 40 mm in front of V.P. Another point B is on V.P. and below H.P. The line joining their front views makes an angle of 45° with XY, while the line joining their top views makes an angle of 30°. Find the distance of the point B from H.P
b) Draw the projections of the following points in third quadrant when the
i. Point A lies in the H.P. and 22 mm away from the V.P.
ii. Point B lies in the V.P. and 32 mm away from the H.P.
iii. Point C lies 32 mm from the H.P. and 22 mm from the V.P

OR

4. The top view of a 75 mm long line $A B$ measures 65 mm , while the length of its front view is 50 mm . It's one end A is in the H.P. and 12 mm in front of the V.P. Draw the projections of $A B$ and determine its inclinations with the H.P. and the V.P.

UNIT-III

5. A regular hexagonal plane of 30 mm side has a corner at 20 mm from V.P. and 50 mm from H.P. Its surface is inclined at 45° to V.P. and perpendicular to H.P. Draw the projections of the plane.

7M C2
L2

14M C2 L2

OR

6. A regular pentagon of 30 mm side is resting on one of its edges on H.P. which is inclined at 45° to V.P. Its surface is inclined at 30° to H.P. Draw its projections

14M C3

UNIT-IV

7. A triangular prism of base side 45 mm and length of axis 75 mm has a corner in the H.P. the face opposite to that corner makes 50° to the H.P. while the axis of the solid makes 30° to the V.P. obtain the two views of the solid.

OR

8. A hexagonal pyramid, base 25 mm side and axis 55 mm long, has one of its slant edges on the ground. A plane containing that edge and the axis is perpendicular to the H.P. and inclined at 45° to the V.P. Draw its projections, when the apex is nearer the V.P. than the base.

14M
C4

UNIT-V

9. Draw the front view, top view and left side view of the object shown in figure. (All dimensions are in mm).

OR
10. Draw the isometric view of a hexagonal prism TWO possible positions, with side of base 25 mm and axis 60 mm long, The prism is resting on its base on H.P. with an edge of the base parallel to V.P. Use the box method.
Hall Ticket Number :
Code: 20AC22T
R-20
| B.Tech. || Semester Supplementary Examinations February 2023Applied PhysicsTime: 3 Hours
Max. Marks: 70
(Common to CSE and AI\&DS)
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$ COa) What are the necessary conditions to get clear and distinct interferencefringes?1
b) What is dielectric polarization? 2
c) Define total internal reflection. 3
d) Write any two applications of semiconductors. 4L1
e) State Meissner's effect. 5L1
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Define interference. What do you meant by coherent sources?
4M CO1
b) Obtain conditions for maxima and minima due to interference of reflected light in thin films.

OR

3. a) What are (i) quarter wave plate and (ii) half wave plate?
4M CO1
b) Describe Nicol Prism and explain how it acts as an analyzer.
8M CO1

UNIT-II

4. a) Derive the relation between dielectric susceptibility and polarizability.
4M CO2
b) What is electronic polarizability. Derive an expression for electronic polarizability.
8M CO2
5. a) Define magnetic flux density B, magnetic field strength H and magnetization M . How are they related with each other?
b) Explain how substances are classified according to their magnetic behavior.

UNIT-III

6. a) If ${ }^{\text {"is }}=\left(3 x^{2}-3 y z\right) i+\left(3 y^{2}-3 z x\right) j+\left(3 z^{2}-3 x y\right) k$ then firid div.
b) Write Maxwell's equations in differential form and explain their physical significance.

OR

7. a) Classify the fibres on the basis of refractive index profile and on the basis of modes.
b) Define numerical aperture of a fibre and derive an expression for it. How numerical aperture is useful on optical fibres.

UNIT-IV

8. a) Distinguish between intrinsic and extrinsic
semiconductors.
b) Explain classification of solids based on band theory. OR
9. a) Write short note on Drift and Diffusion currents.
b) Derive an expression for density of holes in intrinsic semiconductors.

UNIT-V

10. a) Write some applications of superconductors in various fields.
b) Explain the BCS theory with key note of Cooper Pairs. Differentiate between type-I and Type-II superconductors.

OR

11. a) Write any four applications of nanomaterials.
b) With a neat diagram, explain mechanical ball milling process of synthesis of nanomaterials. Write advantages and disadvantages also.

8M CO2

4M CO4
 L2

8M CO4 L2
4M CO2 L3
4M CO3 L3
8M CO3 L2
4M CO3 L2
8M CO3 L3
4M CO4 L1
8M CO4 L3
4M CO5 L1
8M CO5 L2
4M CO5 L1
8M CO5 L2

Code: 20A223T

| B.Tech. || Semester Supplementary Examinations February 2023

Basic Electrical and Electronics Engineering

(Common to CE, CSE and AI\&DS)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

1. Answer ALL the following short answer questions	$(5 \times 2=10 \mathrm{M})$	COBlooms Level
a) State cork screw rule?	1	

a) State cork screw rule?
b) Draw the connection diagram of Swinburne's test? 2
c) How the copper loss varies with power factor in a transformer? $\quad 3 \quad 1$
d) How P-N junction is formed in a diode? 4
e) Write the classification of instruments?

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Three resistors R1, R2 and R3 are connected in series across a constant voltage V . The voltage across R 1 is 20 V . The power consumed by R2 is $25 \mathrm{~W}, \mathrm{R} 3=2 \mathrm{ohms}$. Find the voltage V if the current is 5 A ?

6M 1
6M 1

OR

3. Calculate the effective resistance of the following combination of resistances and the voltage drops across each resistance, when a voltage of 60 V is applied between points A and B as shown in fig.

UNIT-II

4. a) Derive the EMF equation of DC Generator?
b) Explain the Brake test of DC motor?
5. Explain the speed control methods of DC motor?
6. a) Explain the Brake test on three-phase induction motor?
b) Discuss the principle of operation of three-phase transformer?
7. a) Explain the calculation of regulation with synchronous impedance method?
b) Explain the calculation of efficiency and regulation of transformer?
8. a) Explain the operation of diode half-wave rectifier?
b) Describe the diffusion process that takes place at the p-n junction, and explain the presence of depletion region?
9. a) Define
i) active
ii) saturation and cut-off region in a transistor?
b) Sketch characteristics of transistor CE configuration?
10. a) Explain the principle of cathode ray tube?
b) Explain about different types of Fuses?
11. a) In a house there are 5lamps 25 watts used 14 hours pr day, a 200 W refrigerator used 24 hours per day, and a 125 watt water pump used 8hours per day. How much electrical energy used for a month (30days)?
b) Discuss the applications of CRO?

OR

UNIT-III

OR

UNIT-IV

OR

UNIT-V

OR

$$
6 \mathrm{M} \quad 2
$$

6M 2
\square

Code: 20AC21T

| B.Tech. || Semester Supplementary Examinations February 2023

Differential Equations and Vector Calculus

(Common to all Branches)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$)

CO
CO1
a) Find the P.I of $\left(D^{2}-2 D+4\right) y=e^{x} \cos x$

b) Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x$

CO2
c) Find the partial differential equation of all planes passing through the origin.
d) Find $\nabla\left(\nabla \cdot \frac{\bar{r}}{\mathrm{r}}\right)$
e) State Stokes theorem.

CO5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
Marks CO

UNIT-I

2. Solve $\left(D^{2}-4 D+4\right) y=8 x^{2} e^{2 x} \sin 2 x$.

OR

3. Solve, by the method of Variation of Parameters, $y^{\prime \prime}-2 y^{\prime}+y=e^{x} \log x$

12M CO1

UNIT-II

4. In an L-C-R circuit, the charge q on a plate of a condenser is given by $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=E \sin p t$. The circuit is tuned to resonance so that $p^{2}=1 / L C$. If initially the current i and the charge q be zero, show that, for small values of R / L, the current in the circuit at time t is given by ($\mathrm{Et} / 2 \mathrm{~L}$) sin pt .
5. Solve $(2 x-1)^{2} \frac{d^{2} y}{d x^{2}}+(2 x-1) \frac{d y}{d x}-2 y=8 x^{2}-2 x+3$

12M CO2

UNIT-III

6. a) Form the partial differential equation by eliminating the arbitrary function from $\phi\left(\frac{y}{x}, x^{2}+y^{2}+z^{2}\right)=0$.

6M CO3
b) Solve the partial differential equation $\frac{\mathrm{p}}{\mathrm{x}^{2}}+\frac{\mathrm{q}}{\mathrm{y}^{2}}=\mathrm{z}$.

6M CO3

OR

7. Use Separation of Variables to solve $4 u_{x}+u_{y}=3 u_{\text {with }} u(0, y)=3 e^{-y}-e^{-5 y}$.

12M CO3

UNIT-IV

8. a) Find the values of a and b so that the surfaces

$$
a x^{2}-b y z=(a+2) x \text { and } 4 x^{2} y+z^{3}=4
$$

may intersect orthogonally at the point $(1,-1,2)$.
6M co4
b) Show that $\frac{\bar{r}}{r^{3}}$ is solenoidal.

6M CO4
9. a) Find constants a, b, c so that the vector $\overline{\mathrm{A}}=(\mathrm{x}+2 \mathrm{y}+\mathrm{az}) \overline{\mathrm{i}}+(\mathrm{bx}-3 \mathrm{y}-\mathrm{z}) \overline{\mathrm{j}}+(4 \mathrm{x}+\mathrm{cy}+2 \mathrm{z}) \overline{\mathrm{k}}$ is irrotational. Also find ϕ such that $\overline{\mathrm{A}}=\nabla \phi$
b) Prove that div curl $\bar{f}=0$.

6M CO4

UNIT-V

10. Evaluate $\iint_{\mathrm{s}} \overline{\mathrm{F}} \cdot \overline{\mathrm{n}} \mathrm{ds}$ where

$$
\overline{\mathrm{F}}=12 \mathrm{x}^{2} \mathrm{y} \overline{\mathrm{i}}-3 \mathrm{y} \mathrm{z} \overline{\mathrm{j}}+2 \mathrm{z} \overline{\mathrm{k}} \text { and } \mathrm{S} \text { is the portion of }
$$

the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$ included in the first octant.
12M CO5

OR

11. Verify Green's theorem for

$$
\int_{c}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right] \text { where } c \text { is the region }
$$

bounded by $\mathrm{x}=0, \mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=1$.
12M CO5

