Hall Ticket Number: R-20 Code: 20AC21T I B.Tech. II Semester Supplementary Examinations June 2024 **Differential Equations and Vector Calculus** (Common to All Branches) Max. Marks: 70 Time: 3 Hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries **Two marks.** 3. Answer ALL the questions in Part-A and Part-B **PART-A** (Compulsory question) 1. Answer **all** the following short answer questions ($5 \times 2 = 10M$) CO BL a) Solve $(D^2 + 5D + 6)y = 0$ CO1 L3 b) Solve $(x^2D^2 + 4xD + 3)y = 0$ CO₂ L₃ c) Form the partial differential equation by eliminating the arbitrary constants from z = ax + byCO3 L2 d) Find $curl \bar{f}$ for $\bar{f} = z\bar{i} + x\bar{j} + y\bar{k}$ CO4 L1 e) State Green's theorem. CO5 L2 **PART-B** Answer *five* questions by choosing one question from each unit ($5 \times 12 = 60 \text{ Marks}$) Marks BL **UNIT-I** 2. a) Solve $(D^2+6D+9)v=e^{-2x}$ 6M CO1 L3 b) Solve $(D^2 + 1)y = x$ 6M CO1 L3 OR Solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$ by using method of variation of 3. 12M co1 L3 parameters. **UNIT-II** 4. Solve $(1+x)^2 \frac{d^2 y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin[\log(1+x)]$ 12M CO₂ L₃ Solve $(x^2D^2-3xD+4)y=(1+x)^2$ 5. 12M CO₂ L₃

Code: 20AC21T

UNIT-III

6. Form the partial differential equation by eliminating the arbitrary constants a, b from $(x-a)^2 + (y-b)^2 = z^2 \cot^2 \Gamma$

12M CO3 L2

OR

7. Solve
$$x^2(y-z)p + y^2(z-x)q = z^2(x-y)$$

12M CO3 L3

UNIT-IV

8. Find the directional derivative of W = $x^2 - 2y^2 + 4z^2$ at (1,1,-1) in the direction of $2\overline{i} + \overline{j} - \overline{k}$.

12M CO4 L2

OR

9. Find
$$\operatorname{curl} \bar{f}$$
 where $\bar{f} = \operatorname{grad}(x^3 + y^3 + z^3 - 3xyz)$

12M CO4 L2

UNIT-V

10. Evaluate the line integral

$$\int_{c} \left[(x^2 + xy)dx + (x^2 + y^2)dy \right]$$

where c is the square formed by the lines

$$x = \pm 1$$
 and $y = \pm 1$.

12M CO5 L2

OR

11. Verify Stoke's theorem for the function $\bar{F} = x^2\bar{i} + xy\bar{j}$ integrated round the square in the plane z=0 whose sides are along the lines x = 0, y = 0, x = a, y = a.

12M CO5 L2

на	I Ticket Number :										R-20	1	
Cod	le: 20A521T B.Tech. S	Date	a Str	uctu	ıres	thro	oug	h Py	/tho	n	e 2024	,	
Mai	(Comn x. Marks: 70	non to (CSE, ,			****	,	CSE(Al) c	and Al& <i>N</i>	IL) Time: 3	Hours	
Note	2. In Part-A, each of 3. Answer ALL the	question (carries ns in l	parts S Two Part-	(Par o mar A and PAR	rt-A a rks.	and I		B)				
1.	Answer <i>all</i> the follow	wing sho		_					2 =	10M)	CO	BL	
a)	Compare static an	ıd dynan	nic da	ta ty	oes i	n pro	gran	nmin	g lan	guages	CO1	L2	
b)	What are actual page	aramete	rs?								CO2	L1	
C)	What are multiple	except b	olocks	3							CO3	L1	
d)	Define a stack										CO4	L1	
e)	Define Binary Sea	rch Tree	€.								CO5	L1	
						RT-B	_		_				
	Answer five question	ons by cl	hoosii	ng on	e qu	estioi	n fro	m ea	ch u	nit (5 x 12			DI
					NIT-						Marks	СО	BL
a)	Compare sequentia	al selec	tion s				ntro	İ			6M	CO1	L2
b)	Define Literals. Wr								nles		6M		L1
υ,			O	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	OR				.р.оо		Olvi	COT	
	Illustrate, the various	us ways	to ite	rating	g ove	r a L	ist				12M	CO1	L3
				L	JNIT-	·II							
	Discuss various str	ing hand	dling r	netho	ods ii OR	n Pyt	hon				12M	CO2	L2
a)	Write a Python fund	ction tha	t prin	ts all	prim	e nur	mber	s fro	m 1 t	to 100.	6M	CO2	L1
b)	Discuss three fund	amental	featu		f obj		rient	ed p	rogra	mming.	6M	CO2	L2
	What is inheritance	? Illustra	ate ty _l	pes c	of inh	eritar	nce v	with p	ytho	n code	12M	CO3	L1
a)	Write a Python Problock	ogram to	Dem	nonst	rate	multi	ple e	excep	otions	s in a sing	le 6M	CO3	L1
b)	Difference between	n built-in	exce		s and		dling	g exc	eptic	n	6M	CO3	L2
	Explain implementa	ation of (Queu	e AD	T usi	ing P	ytho	n Lis	t with	examples	s. 12M	CO4	L2
a)	List out the advanta	ages and	d disa	idvan	tage	s of u	using	a lir	ked	list	6M	CO4	L1
b)	List the application	s of stac	k.								6M	CO4	L1
				U	JNIT-	·V							
	Describe the priorit	y queue	s and	its o	pera OR	tions	in P	ythoı	٦.		12M	CO5	L2
a)	Construct a Binary		tree w	ith fo	ollowi	ing ke	ey el	eme	nts:				
	15, 10, 20, 8, 12, <i>1</i>	16, 25									6M	CO5	L6

*** End ***

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

5.

7.

2.

Hall Ticket Number :							
Code: 20A324T						R-20	

I B.Tech. II Semester Supplementary Examinations June 2024

Engineering Drawing

(Common to CSE, AI&DS, CSE(AI), CSE(DS) and AI&ML)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

> Marks UNIT-I

- Divide a straight-line AB of length 50 mm, into 7 equal parts. 1. a) 7M CO₁ L2
 - Construct a regular Hexagon by General Method, given the length of its side is 40mm. CO₁ L2 7M

OR The major and minor axes of an ellipse are 120mm and 80mm. Draw an

ellipse by Concentric Circles method 14M CO₁ L2 **UNIT-II**

3. A point is 50mm from both the reference planes. Draw its projections in all possible positions. 14M CO₂ L3

4. A line AB, 50mm long, has its ends A in both the H.P and the V.P. It is inclined at 30° to the H.P and at 45° to the V.P. Draw the projections. 14M CO₂

OR

UNIT-III

A square ABCD of 40mm side has a corner on the HP and 20mm in front of the VP. All the sides of the squares are equally inclined to the HP and

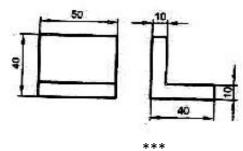
parallel to the VP. Draw its projections. CO₃ 14M

OR 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° to the H.P. Draw its projections. 14M CO₃ L3

UNIT-IV

Draw the projections of a hexagonal prism of base 25mm side and axis 60mm long, when it is resting on one of its corners of the base on HP. The

axis of the solid is inclined at 450 to the HP. 14M CO4 L3


8. A square prism, base 40mm side and height 65mm has its axis inclined at 450 to the HP and has an edge of its base, on the HP and inclined at 30° to the VP. Draw its Projections. 14M CO₄ L3

9. Draw the isometric projection of (i) a cylinder (ii) a cone of base diameter 14M L3

UNIT-V

30mm and axis 45mm long. CO₅

10. Draw the isometric view to the following orthographic views

СО

BL

L3

На	III Ticket Number:		
Co	de: 20AC22T	R-20	
-	I B.Tech. II Semester Supplementary Examinations June 2	2024	
	Applied Physics		
	(Common to CSE, AI&DS, CSE(AI) and CSE(DS))		
Ma	x. Marks: 70 *******	Time: 3 I	Hours
Not	e: 1. Question Paper consists of two parts (Part-A and Part-B)		
1100	2. In Part-A, each question carries Two marks.		
	3. Answer ALL the questions in Part-A and Part-B		
	$\frac{\mathbf{PART-A}}{\mathbf{A}}$		
	(Compulsory question)	CO DI	
	1. Answer all the following short answer questions (5 X 2 = 10M)	CO BI	
	, , , , , , , , , , , , , , , , , , , ,	CO1 L1	
	, , , , , , , , , , , , , , , , , , , ,	CO ₂ L ₁	
	,	CO ₃ L ₁	
	, , , , , , , , , , , , , , , , , , , ,	CO4 L1	
	•	CO ₅ L ₁	
	PART-B Answer five questions by cheesing one question from each unit (5 v.12 – 6	A Morks	`
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 6$	Marks	CO
	UNIT-I	Marks	00
	Explain the interference in parallel thin film and derive the conditions for		
	bright and dark bands.		CO1
	OR		
	Derive the conditions for maxima and minima intensities formed by		
	Fraunhofer diffraction due to double slit.	12M	CO1
	UNIT-II		
a)	Define ionic polarization and derive Ionic polarizability.	8M	CO2
b)	Write the applications of dielectrics.	4M	CO2
	OR		
a)	Distinguish soft and hard magnetic materials.	8M	CO2
b)	Define magnetization and magnetic susceptibility.	4M	CO2
	UNIT-III		
	Derive Maxwell's equations for electromagnetics	12M	CO3
	OR		
a)	Define total internal reflection and derive the expression for critical angle.	6M	CO3
b)	Distinguish step index and graded index optical fiber	6M	CO3
	UNIT-IV		
a)	Write the applications of semiconductors.	6M	CO4
b)	Explain the N-type semiconductor with energy band diagram	6M	CO4

UNIT-V Distinguish Type-I and Type-II superconductors 12M CO₅ L4

Classify the solids based on energy bands

9.

10.

11. a) Explain the mechanical and thermal properties of nanomaterials CO5 6M L2 b) Write the applications of nanomaterials 6M CO5 L1

*** End ***

12M

CO4

L4

	На	Il Ticket Number :	D 20		
	Cod	de: 20A223T	R-20		
		I B.Tech. II Semester Supplementary Examinations June 20	24		
		Basic Electrical and Electronics Engineering (Common to CE, CSE, CSE(AI), CSE(DS) and AI&DS)			
	Ma		me: 3 H	Hours	
	Note	******** 1. Overtion Pener consists of two parts (Part A and Part P)			
	Note	 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A 			
		(Compulsory question)			
		nswer <i>all</i> the following short answer questions $(5 \times 2 = 10M)$	CC		
	a)	State and explain Kirchhoff's Current Law.	CO		
	b)	What is the expression of back emf?)2 L2	
	c)	Define regulation and efficiency of a transformer.	CO	3 L1	
	d) '	What is a PN Junction diode and how this is to be operated.	CC)4 L2	
	e) '	What are the essential components of indicating instrument?	CC)5 L1	
		PART-B Angiver five questions by cheesing one guestion from each unit (5 v. 12 – 60)	Monka	`	
		Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$	Marks	, CO	BL
		UNIT-I			
2.	a)	A color TV has a current of 1.99 A when connected to a 230V household circuit. What is the resistance in ohms of the TV set?	4M	CO1	L3
	b)	Discuss Faraday's laws of electromagnetic induction?	8M	CO1	L2
	,	OR	0		
2	2)	_	61/1	CO1	I 1
٥.	a)	Define the following terms with an example: (i) Unilateral elements (ii) Distributed elements (iii) Linear elements (iv) active elements	OIVI	001	
	b)	A circuit consists of three resistances of 12, 18 and 36ohms respectively by joined in parallel and the combination is connected in series with a resistance of 12ohms. The whole circuit is connected to 60V supply. Calculate current in each branch, total current drawn and power dissipated in each resistor.	6M	CO1	L3
		UNIT-II D			
4.	a)	What is the operating principle of a DC motor? Explain in detail		CO2	
	b)	A long shunt compound generator delivers a load current of 30A at 400V and has armature, series field and shunt field resistances of 0.04 ohms, 0.02 ohms and 180 ohms respectively. Calculate the generated voltage and the armature current. Allow 1V per brush for contact drop.	6M	CO2	L3

Code: 20A223T

OR

5.	a)	Draw and explain the different types of generators?	8M	CO2	L2
	b)	Explain the principle of operation of DC generator? UNIT-III	4M	CO2	L2
6.	a)	Explain the transformer on no-load with phasor diagram. 6M 3 4	6M	CO3	L4
	b)	A single phase core type 50Hz transformer has a square having 25cm side, the maximum flux density in the core 1.2 wb/m2 . Calculate the number of turns per limb on H.V. side and L.V side for a $3400V/240V$ ratio.	6M	CO3	L3
		OR			
7.		Explain the OC and SC test of transformer with necessary diagrams?	12M	CO3	L2
		UNIT-IV			
8.		Draw and explain the circuit diagram of a common emitter amplifier and draw its characteristics?	12M	CO4	L2
		OR			
9.	a)	Explain the operation of diode half-wave rectifier?	6M	CO4	L2
	b)	Describe the diffusion process that takes place at the p-n junction, and explain the presence of depletion region? UNIT-V	6M	CO4	L2
10.		Explain How frequency is measured by using CRO.	12M	CO5	L2
		OR			
11.	a)	Explain the principle of cathode ray tube?	6M	CO5	L2
	b)	Explain about different types of Fuses? *** End ***	6M	CO5	L2