Hall Ticket Number :	R-	20]
Code: 20AC21T I B.Tech. II Semester Supplementary Examinations Februa			_
Differential Equations and Vector Calculus	, 2020		
(Common to all Branches) Max. Marks: 70 ********	Time:	3 Hours	5
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B			
PART-A			
(Compulsory question) Answer ALL the following short answer questions $(5 \times 2 = 10M)$		СО	BL
a) Find the P.I of $(D^2-2D+4)y = e^x \cos x$		CO1	L2
.2			
b) Solve $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = \log x$		CO2	L3
c) Find the partial differential equation of all planes passing througorigin.	gh the	CO3	L2
d) Find $\nabla \left(\nabla \cdot \frac{\overline{r}}{r} \right)$		CO4	L2
e) State Stokes theorem.		CO5	L3
PART-B	(0.34	• \	
Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =	: 60 Mar Marks	KS) CO	Bl
UNIT-I			
Solve $(D^2-4D+4)y = 8x^2e^{2x}\sin 2x$.	12M	CO1	L3
OR			
3. Solve, by the method of Variation of Parameters,			
$y'' - 2y' + y = e^x \log x$	12M	CO1	L3
UNIT-II			
4. In an L-C-R circuit, the charge q on a plate of a			
condenser is given by $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = E\sin pt$. The			
circuit is tuned to resonance so that $p^2 = 1/LC$. If initially			
the current i and the charge q be zero, show that, for			
small values of R/L , the current in the circuit at time t is			
given by $(Et/2L)\sin pt$.	12M	000	

6M CO4

6M CO4

12M cos

L2

L2

L3

L5

OR

5. Solve
$$(2x-1)^2 \frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} - 2y = 8x^2 - 2x + 3$$

UNIT-III

6. a) Form the partial differential equation by eliminating the arbitrary function from $\phi\left(\frac{y}{x}, x^2 + y^2 + z^2\right) = 0$.

b) Solve the partial differential equation $\frac{p}{x^2} + \frac{q}{y^2} = z$. 6M cos L3

7. Use Separation of Variables to solve

$$4u_x + u_y = 3u_{\text{ with }} u(0,y) = 3e^{-y} - e^{-5y}.$$
 12M CO3 L3

8. a) Find the values of a and b so that the surfaces

$$ax^2 - byz = (a+2)x$$
 and $4x^2y + z^3 = 4$ may intersect orthogonally at the point $(1, -1, 2)$.

b) Show that $\frac{r}{r^3}$ is solenoidal. 6M CO4 L3

OR

9. a) Find constants a, b, c so that the vector $\overline{A} = (x+2y+a\,z)\,\overline{i} + (bx-3y-z)\,\overline{j} + (4x+cy+2z)\overline{k} \text{ is}$ irrotational. Also find ϕ such that $\overline{A} = \nabla \phi$ 6M CO4 L2

b) Prove that div $\operatorname{curl} \overline{f} = 0$.

10. Evaluate $\iint \overline{F} \cdot \overline{n} \, ds$ where

$$\overline{F} = 12 \, x^2 y \, \overline{i} - 3 \, y \, z \, \overline{j} + 2 \, z \, \overline{k}$$
 and S is the portion of the plane $x + y + z = 1$ included in the first octant.

OR

11. Verify Green's theorem for $\int\limits_{c} \left[(3x^2 - 8y^2) dx + (4y - 6xy) dy \right] \text{ where c is the region}$

bounded by
$$x = 0$$
, $y = 0$ and $x + y = 1$.

12M CO5 L5

		Ticket Number :	R.	-20	
	Code	E: 20A521T I B.Tech. II Semester Supplementary Examinations Februa			
		Data Structures through Python	1 y 202	J	
	Mana	(Common to CSE, AI&DS and AI&ML)	Time o	. 2 11	
	Max.	. Marks: 70 ******	iime	: 3 Hou	15
	Note:	 Question Paper consists of two parts (Part-A and Part-B) In Part-A, each question carries Two mark. 			
		3. Answer ALL the questions in Part-A and Part-B PART-A			
		(Compulsory question)			
1. A	nswe	er ALL the following short answer questions $(5 \times 2 = 10 \text{M})$		CO	BL
•		a for loop in python that prints even numbers from 0 to	100,		
	•	range function.		CO1	L,
-		ut the differences between an array and a list in Python.		CO2	L:
c) V	Vhat	is slicing in Python? Give Illustrations.		CO3	L
d) L	ist o	ut basic operations on list that can be performed in Python.		CO4	L:
e) V	Vrite	the operations of Queues.		CO5	L!
		PART-B	<0.3.5		
	1	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 =$	60 Mai	rks)	
			Marks	СО	BL
		UNIT-I			
2.	. a)	Write a Python program to input n numbers and to	014		
		reverse the set of numbers without using List structure.	ЮIVI	CO1	L
	b)	Write a Python program to find maximum element and minimum element from the given List	6M	CO1	L،
		OR	0	001	_
3.	. a)	Explain about operations on Dictionaries in Python.	6M	CO1	L،
	b)	Write about different loop control statements available			_
	,	in python? Explain with suitable examples.	6M	CO1	L
		UNIT-II			
4.	. a)	What type of parameter passing is used in Python?			
		Justify your answer with sample programs.	6M	CO2	L
	b)	Write a Python function that prints all factors of a given			
		number.	6M	CO2	L!
		OR			
5.	. a)	What are global and local variables in Python?	6M	CO2	L,
	b)	Explain about garbage collection in Python.	6M	CO2	L:

		Code:	20A521T	
	UNIT-III Explain inheritance in Python with an example	12M	CO3	L2
	OR	12111	003	LZ
a)	Write a Python program that overloads + operator, to add two objects of a class.	6M	CO3	L5
b)	How to create, raise and handle user defined exceptions in Python	6M	CO3	L5
	UNIT-IV			
	Describe the concept of stack and its implementation			
	using linked list in Python.	12M	CO4	L2
	OR			
	Describe the operations performed in Single linked list.	12M	CO4	L6
	UNIT-V			
a)	Construct an AVL tree with the following values:			
	{ 50 , 20 , 60 , 10, 8 , 15 , 32 , 46 , 11 , 48 }	6M	CO5	L3
b)	Construct a Binary search tree with following key			
	elements: 15, 10, 20, 8, 12, 16, 25	6M	CO5	L6
	OR			
a)	Explain Binary tree with an example.	4M	CO5	L3
b)	Construct a max heap for the following:			
	{11, 9, 10, 8, 5, 2, 4}	8M	CO5	L6
	*** End ***			
	b)a)a)	Explain inheritance in Python with an example. OR a) Write a Python program that overloads + operator, to add two objects of a class. b) How to create, raise and handle user defined exceptions in Python UNIT-IV Describe the concept of stack and its implementation using linked list in Python. OR Describe the operations performed in Single linked list. UNIT-V a) Construct an AVL tree with the following values: {50, 20, 60, 10, 8, 15, 32, 46, 11, 48} b) Construct a Binary search tree with following key elements: 15, 10, 20, 8, 12, 16, 25 OR a) Explain Binary tree with an example. b) Construct a max heap for the following: {11, 9, 10, 8, 5, 2, 4}	UNIT-III Explain inheritance in Python with an example. OR a) Write a Python program that overloads + operator, to add two objects of a class. b) How to create, raise and handle user defined exceptions in Python UNIT-IV Describe the concept of stack and its implementation using linked list in Python. OR Describe the operations performed in Single linked list. UNIT-V a) Construct an AVL tree with the following values: {50, 20, 60, 10, 8, 15, 32, 46, 11, 48} b) Construct a Binary search tree with following key elements: 15, 10, 20, 8, 12, 16, 25 OR a) Explain Binary tree with an example. 4M Construct a max heap for the following: {11, 9, 10, 8, 5, 2, 4} 8M	Explain inheritance in Python with an example. OR a) Write a Python program that overloads + operator, to add two objects of a class. b) How to create, raise and handle user defined exceptions in Python OR Describe the concept of stack and its implementation using linked list in Python. OR Describe the operations performed in Single linked list. UNIT-V a) Construct an AVL tree with the following values: {50, 20, 60, 10, 8, 15, 32, 46, 11, 48} Construct a Binary search tree with following key elements: 15, 10, 20, 8, 12, 16, 25 OR a) Explain Binary tree with an example. 5 Construct a max heap for the following: {11, 9, 10, 8, 5, 2, 4} 8M cos

	H	all Ticket Number :									R-2	<u></u>	7
	Cod	de: 20A324T I B.Tech. II Sen		ipple ngin e					atior	L ns Februar			_
	Ма	x. Marks: 70	(Comm	_		Al&[_	M&N	L)	Time: 3	3 Hour	TS.
											Marks	СО	Blooms Level
				UN	T–I								2010.
1.	of a	ixed point is 75m a point P moving aight line is equa curve.	such a v	way t	hat it	s dis	stan	ce fr	rom	the fixed	14M	C1	L1
				0	R								
2.	d=	aw a cycloid gi [.] 30mm. Draw a ·ve.							•		14M	C1	L1
	041			UNI	T–II							O1	
3.	a)	The point A is of point B is on V.F views makes and their top views rethe point B from	P. and be angle o makes ar	low h f 45º	H.P. 7 with	Γhe XY,	line whi	joini le th	ing t ne lir	heir front ne joining	7M	C2	L2
	b)	Draw the project quadrant when i. Point A lies in	the the H.P.	. and	22m	m a	way	fror	m th	e V.P.			
		ii. Point B lies in					•						
		iii. Point C lies V.P	3211111 11	iom i	ne n	I.P.	and	221	HIII	from the	7M	C2	L2
				0	R							02	
4.	the and	e top view of a 7 elength of its from d 12mm in front o	t view is of the V.	50mı P. Dr	n. It's aw th	s on ne p	e en roje	id A ctior	is in ns o	the H.P.			
	det	termine its inclina	ations Wi			'. an	d th	e V.	.Р.		14M	C2	L2
5.	fro	egular hexagona m V.P. and 50mr P. and perpendic	n from ⊢	I.P. I	nm si	rface	e is	incli	ned	at 45° to			
		ne.					•	•			14M	C3	L3

Code: 20A324T

OR

6. A regular pentagon of 30mm side is resting on one of its edges on H.P. which is inclined at 45° to V.P. Its surface is inclined at 30° to H.P. Draw its projections

14M

L3

C3

UNIT-IV

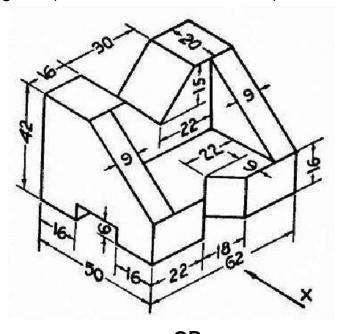
7. A triangular prism of base side 45mm and length of axis 75mm has a corner in the H.P. the face opposite to that corner makes 50° to the H.P. while the axis of the solid makes 30° to the V.P. obtain the two views of the solid.

14M

C4 L4

OR

8. A hexagonal pyramid, base 25mm side and axis 55mm long, has one of its slant edges on the ground. A plane containing that edge and the axis is perpendicular to the H.P. and inclined at 45° to the V.P. Draw its projections, when the apex is nearer the V.P. than the base.


14M

C4

L2

UNIT-V

9. Draw the front view, top view and left side view of the object shown in figure. (All dimensions are in mm).

14M C5

L3

OR

10. Draw the isometric view of a hexagonal prism TWO possible positions, with side of base 25mm and axis 60mm long, The prism is resting on its base on H.P. with an edge of the base parallel to V.P. Use the box method.

14M

C5

L1

Н	all Ticket Number :									\neg
Cod	de: 20AC22T						<u></u>	R	2-20	
	I B.Tech. II Semes			-		ations	Febru	uary 202	23	
		-	oplied	-)C1				
Ма	x. Marks: 70	(Comm	on to C	SE and	I AI&L)3)		Time	e: 3 Hou	ırs

Not	e: 1. Question Paper cor 2. In Part-A, each que		•		and P	art-B)				
	3. Answer ALL the q				rt-B					
	•		PAR'							
_		•	mpulsor	_						
	er ALL the following shor				(2 = 1	,	. :		СО	BL
	t are the necessary	conditions	s to get	ciear	and d	IISTINC	tinten	erence		1.4
fring		rotion?							1	L1
	at is dielectric polariz								2	L1
	ne total internal refle		da a a ala	1					3	L1
	e any two applicatio	ns of sem	niconau	ictors.					4	L1
Stat	e Meissner's effect.								5	L1
	A	.1	PAR'			1 4	(5 10	(O.M.	1	
	Answer five questions b	y cnoosing	one que	stion ire	om eac	en unit	(5 X 12	a = 60 Ma Marks	CO	BL
	.		IIT–I							
2. a	,	ce. What	t do yo	u mea	ant b	y coh	erent	484		
	sources?							4IVI	CO1	L1
b) Obtain condition					na di	ue to	01.4	221	
	interference of re		_	nın ılır	ns.			ØIVI	CO1	L2
			OR							
3. a	i) What are (i) quar	•	'	` ,		•		4M	CO1	L1
b) Describe Nicol F	Prism and	d expla	ain ho	w it a	acts a	as an			
	analyzer.							M8	CO1	L3
		UN	IT–II							
4. a	,		een di	electri	ic su	scept	ibility			
	and polarizability							4M	CO2	L3
b) What is electroni	•	•	Derive	e an o	expre	ssion			
	for electronic pol	arızability	/ .					8M	CO2	L2

OR

Code: 20AC22T

5.	a)	Define magnetic flux density B, magnetic field strength H and magnetization M. How are they related with each other?	4M	CO2	L3
	b)	Explain how substances are classified according to			
	- /	their magnetic behavior.	8M	CO2	L2
		UNIT-III			
6.	a)	If $i = (3x^2 - 3yz) i + (3y^2 - 3zx) j + (3z^2 - 3xy) k$ then			
0.	ω,	find div $\frac{1}{2}$.	4M	CO3	L3
	b)	Write Maxwell's equations in differential form and			
		explain their physical significance.	8M	CO3	L2
		OR			
7.	a)	Classify the fibres on the basis of refractive index			
		profile and on the basis of modes.	4M	CO3	L2
	b)	Define numerical aperture of a fibre and derive an			
		expression for it. How numerical aperture is useful on			
		optical fibres.	8M	CO3	L3
		UNIT-IV			
8.	a)	Distinguish between intrinsic and extrinsic			
		semiconductors.	4M	CO4	L2
	b)	Explain classification of solids based on band theory.	8M	CO4	L2
		OR			
9.	a)	Write short note on Drift and Diffusion currents.	4M	CO4	L1
	b)	Derive an expression for density of holes in intrinsic			
		semiconductors.	8M	CO4	L3
		UNIT-V			
10.	a)	Write some applications of superconductors in various			
		fields.	4M	CO5	L1
	b)	Explain the BCS theory with key note of Cooper Pairs.			
		Differentiate between type-I and Type-II			
		superconductors.	8M	CO5	L2
		OR			
11.	a)	Write any four applications of nanomaterials.	4M	CO5	L1
	b)	With a neat diagram, explain mechanical ball milling			
		process of synthesis of nanomaterials. Write			
		advantages and disadvantages also.	8M	CO5	L2
		*** End ***			

Hall Ticket Number :												
Code: 20A 223T								R-20				
Code: 20A223T I B.Tech. II Semester Supplementary Examinations February 2023												

Basic Electrical and Electronics Engineering

(Common to CE, CSE and AI&DS)

Time: 3 Hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**)

- 2. In Part-A, each question carries **Two mark.**
- 3. Answer ALL the questions in Part-A and Part-B

PART-A

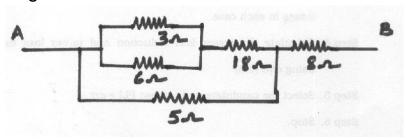
(Compulsory question)

1. Answer ALL the following short answer questions (5 X 2 = 10M)	CO	Blooms Level
a) State cork screw rule?	1	1
b) Draw the connection diagram of Swinburne's test?	2	2
c) How the copper loss varies with power factor in a transformer?	3	1
d) How P-N junction is formed in a diode?	4	1
e) Write the classification of instruments?	5	1

Answer *five* questions by choosing one question from each unit ($5 \times 12 = 60 \text{ Marks}$)

Marks CO BL

UNIT-I


- 2. a) Three resistors R1, R2 and R3 are connected in series across a constant voltage V. The voltage across R1 is 20V. The power consumed by R2 is 25 W, R3=20hms. Find the voltage V if the current is 5A?
- 6M 1 3

b) Discuss about static and dynamic induced EMF?

6M 1 2

OR

3. Calculate the effective resistance of the following combination of resistances and the voltage drops across each resistance, when a voltage of 60V is applied between points A and B as shown in fig.

12M

3

			Code: 20 <i>A</i>	A223T	
		UNIT-II			
4.	a)	Derive the EMF equation of DC Generator?	6M	2	2
	b)	Explain the Brake test of DC motor?	6M	2	2
		OR			
5.		Explain the speed control methods of DC motor?	12M	2	2
		UNIT-III			
6.	a)	Explain the Brake test on three-phase induction motor?	6M	3	2
	b)	Discuss the principle of operation of three-phase			
		transformer?	6M	3	2
		OR			
7.	a)	Explain the calculation of regulation with synchronous			
		impedance method?	6M	3	2
	b)	Explain the calculation of efficiency and regulation of			
		transformer?	6M	3	2
		UNIT-IV			
8.	a)	Explain the operation of diode half-wave rectifier?	6M	4	2
	b)	Describe the diffusion process that takes place at the p-n			
		junction, and explain the presence of depletion region?	6M	4	2
		OR			
9.	a)	Define			
		i) active ii) saturation and cut-off region in a transistor?	6M	4	2
	b)	Sketch characteristics of transistor CE configuration?	6M	4	2
		UNIT-V			
10.	a)	Explain the principle of cathode ray tube?	6M	5	2
	b)	Explain about different types of Fuses?	6M	5	2
		OR			
11.	a)	In a house there are 5lamps 25 watts used 14 hours pr			
		day, a 200 W refrigerator used 24 hours per day, and a			
		125 watt water pump used 8hours per day. How much	014		
	L- N	electrical energy used for a month (30days)?	9M	5	3
	b)	Discuss the applications of CRO? *** End ***	3M	5	2
		Ena "TT			