| Hall Ticket Number : |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Code: 20AC22T
| B.Tech. || Semester Supplementary Examinations December 2023

## Applied Physics

(Common to CSE, Al\&DS, CSE(Al) and CSE(DS) )

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ( $5 \times 2=10 \mathrm{M}$ ) CO BL
a) Write any four applications of diffraction. CO1 L1
b) Define dielectric polarizability. CO2 L1
c) What are integral forms of Maxwell's equations? CO3 L1
d) Define Hall effect. CO4 L1
e) Explain the mechanical properties of nano materials.

## PART-B

Answer five questions by choosing one question from each unit ( $5 \times 12=60$ Marks )

## UNIT-I

2. a) Explain the formation of Newton's rings and derive the expression for diameter of the dark ring in the reflected system.
b) In Newton's Ring Experiment, the diameters of the $4^{\text {th }}$ and $12^{\text {th }}$ dark rings are 0.35 cm and 0.60 cm respectively. Find the diameter of the $20^{\text {th }}$ dark ring?

## OR

3. a) Describe the construction of Nicol prism and show how it can be used as a polarizer or analyzer.
b) Find the thickness of a quarter wave plate when the wavelength of light is equal to $5890 \AA, \mu_{0}=1.55$, and $\mu_{E}=1.54$.

2M CO1 L3
UNIT-II
4. a) What is meant by local field in a dielectric and how it is
calculated for a cubic structure?

8M CO2 L1
b) Obtain Clausius-Mosotti equation.

4M CO2 L2

## OR

5. a) Define magnetic susceptibility and permeability.

4M CO2 L1
b) Classify magnetic materials and explain their properties.
UNIT-III
6. a) State and prove the Stoke's theorem for curl.
6M ..... CO3 ..... L1
b) Prepare the electromagnetic wave equation for non- conducting medium. 6 M CO 3 ..... L3

## OR

7. a) Distinguish between light propagation in step index optical fiber and graded index optical fiber. ..... 8 M CO ..... L4
b) Explain about signal attenuation in optical fibers? ..... 4 M CO3 L2
UNIT-IV
8. a) Differentiate conductors, semiconductors and insulators on the basis of energy band structure. ..... 8M CO4 ..... L4
b) Explain the variation of Fermi level in N-type semiconductor with respect to temperature. 4M CO4 ..... L2
OR
9. a) Distinguish between direct and indirect band gap semiconductors. ..... 8M co4 ..... L4
b) Write any four important applications of semiconductors. ..... 4M CO4 L1
UNIT-V
10. a) What is Josephson's effect? Discuss the AC and DCJosephson's effects.8M co5 L2b) Write any four applications of superconductors.4 M CO5 L1
OR
11. a) Explain the synthesis of nano materials by Chemical vapor deposition. ..... 8M CO5 ..... L2
b) Write any four applications of Nano materials. ..... 4M CO5 L1
$\square$
Code: 20A223T
| B.Tech. || Semester Supplementary Examinations December 2023

# Basic Electrical and Electronics Engineering (Common to CE, CSE, Al\&DS, CSE(Al) and CSE(DS) ) 

Max. Marks: 70
Time: 3 Hours
*********
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ( $5 \times 2=10 \mathrm{M}$ ) CO BL
a) State and explain Kirchhoff's Current Law. 1
b) What is the significance of back emf? 2
c) Define regulation and efficiency of a transformer.
d) What is a PN Junction diode and how this is to be operated.
e) What are the essential components of indicating instrument?

## PART-B

Answer five questions by choosing one question from each unit ( $5 \times 12=60$ Marks ) Marks CO BL

## UNIT-I

2. a) Two batteries $A$ and $B$ with the internal resistances $R_{A}$ and $R_{B}$ are connected in parallel to supply current of 155 A to a load resistance $R_{L}$. Given $E_{A}=122 \mathrm{~V}, R_{A}=0.15$ ohms and $R_{B}=0.1$ ohms and $I_{B}=60 \mathrm{~A}$. Calculate $E_{B}$ and power drawn by the load?
b) A 35 V d.c supply is connected across a resistance of 600 ohms in series with an unknown resistance R. A voltmeter having a resistance 1200 ohms is connected across 600 ohms and shows a reading of 5 V . Calculate the value of resistance R .

## OR

3. a) Define the following terms with an example:
(i) Unilateral elements
(ii) Distributed elements (iii) Linear elements (iv) active elements
b) A circuit consists of three resistances of 12,18 and 36 ohms respectively by joined in parallel and the combination is connected in series with a resistance of 12 ohms. The whole circuit is connected to 60 V supply. Calculate current in each branch, total current drawn and power dissipated in each resistor.

## UNIT-II

4. a) Explain in detail about the classification of DC generators based on the type of excitation? Give the connection diagrams.
b) A 4 pole 220 V wave connected shunt motor gives 11.19 kW when running at 1000 r.p.m and drawing armature and field current of 50A and 1 A respectively. It has 540 conductors. Its resistance is 0.1 ohms. The brush drop is 1 V per brush. Calculate total torque, useful torque, flux per pole, rotational losses and efficiency?

## OR

5. a) What is the operating principle of a DC motor? Explain in detail
b) A long shunt compound generator delivers a load current of 30A at 400 V and has armature, series field and shunt field resistances of 0.04 ohms, 0.02 ohms and 180 ohms respectively. Calculate the generated voltage and the armature current. Allow 1V per brush for contact drop

## UNIT-III

6. a) Explain the transformer on no-load with phasor diagram.
b) A single phase core type 50 Hz transformer has a square having 25 cm side, the maximum flux density in the core $1.2 \mathrm{wb} / \mathrm{m} 2$ .Calculate the number of turns per limb on H.V. side and L.V side for a $3400 \mathrm{~V} / 240 \mathrm{~V}$ ratio.

## OR

7. a) Draw and explain the torque-slip characteristics of three-phase induction motor
b) A 3-phase star connected alternator has 8-poles and runs at 750 rpm . It has 24 slots/phase and 10 conductors per slot, the flux being $0.055 \mathrm{~Wb} /$ pole. Calculate the line voltage. Assume winding factor to be 0.96 .

## UNIT-IV

8. a) Explain about the operation of a transistor as amplifier with a neat of circuit diagram?
b) Draw and explain the circuit diagram of a common emitter amplifier and draw its charcteristics?

## OR

9. a) For a transistor connected in common-emitter configuration, sketch the output characteristics relating collector current and the collector emitter voltage, for various values of base current. Explain the shape of the characteristics.
b) Justify the answer the transistor acts as an amplifier?

6M 4

## UNIT-V

10. Explain How frequency is measured by using CRO.

12 M 5

## OR

11. Classify the cables and explain in details any of two of them.
$\square$

## Code: 20AC21T

| B.Tech. || Semester Supplementary Examinations December 2023

## Differential Equations and Vector Calculus

(Common to all Branches)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ CO BL
a) Find the particular integral of (
b) Write the second order Legendre's Linear Equation form
c) Solve $p-q=1$

e) State Gauss Divergence Theorem

PART-B
Answer five questions by choosing one question from each unit (5x12=60 Marks) Marks CO BL

3. Solve $\left(D^{2}+3 D+2\right) y=e^{-x}+x^{2}+\cos x$

12M 1
3

## UNIT-II

4. Solve ${ }_{x^{2}}^{2} \frac{d^{2} y}{d x^{2}}+-2_{x} \frac{d y}{d x}-4_{y}=x^{2}+2 \log x$

12M 23
OR
5. An uncharged con ${ }_{\text {din }}^{\text {en }} \underset{\text { ser of capacity }}{\mathbf{O R}} \mathrm{C}$ is charged by applying an e.m.f $\frac{E s, \overline{i n t}}{\sqrt{L C}}$.througl' leads of self-inductance $L$ and negligible resistance, prove that at any time $t$, the charge on one of the plates is $\frac{\hat{k}^{C} C}{-\frac{2}{-}}\left\{\sin \frac{t}{\sqrt{L C}}-\frac{t}{\overline{\overline{L C}}} \cos \frac{t}{\overline{\overline{L C}}}\right\} \quad 12 \mathrm{M} \quad 2 \quad 3$

## UNIT-III

6. a) Form the partial differential equation by eliminating arbitrary functions f and g from $z=f(x+a t)+g(x-a t)$
b) Identify the appropriate form and solve
 6M 3

## OR

7. Using the metho jari aion of v ariables solve

$$
3 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0, \text { 'd of sel } u(x, 0)=4 e^{-x}
$$

## UNIT-IV

 point $\mathrm{p}(1,2,3)$ in the direction $\begin{aligned} & f=x- \\ & F \\ & =x\end{aligned}$
Where Q is the point $(5,0,4)$
6M 43

$\mathrm{F}=\operatorname{grad}\left(x^{3}+y^{3}+{ }^{z 3}-3 x y z\right)$
6M 43 OR

 so, find its scalar potential

12M 4
3

## UNIT-V

10. Using Grelgn's theoren. Evaluate $\int_{\underset{c}{\prime}(7)}$
where C is trle plane triar $\left.\operatorname{con}^{c} y-\sin x\right) d x+\operatorname{cosidy}$

$$
y=4, x=\frac{\pi}{2} \text { and } y=\frac{x}{\pi}
$$

12M 5

## OR

11. Apply stokes theorem to evaluate $\iint_{c}\left(y_{2} d x+z d j,+x_{d z}\right)$ where C is the curve of intersection of $\begin{gathered}c \\ y_{2} \\ x^{2}+{ }_{y}{ }_{2}+{ }_{z}{ }^{2}=a^{2}{ }^{2}\end{gathered}$ and $x+z=a$
where C is tr $^{\text {le }}$ plane triar ${ }_{2 x}$ igl enclosied by the lines
$\square$
Code: 20A521T
| B.Tech. || Semester Supplementary Examinations December 2023

## Data Structures through Python

(Common to CSE, AI\&DS, AI\&ML, CSE(AI) and CSE(DS) )
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) Compare static and dynamic data types in programming languages $\mathrm{CO} \quad \mathrm{L} 2$
b) What are the advantages of Modular Programming?

CO2 L1
c) Differentiate built-in and user-defined exceptions.

CO3 L1
d) How data abstraction differs from procedural abstraction?

CO4 L3
e) What is a full binary tree?

## PART-B

Answer five questions by choosing one question from each unit ( $5 \times 12=60 \mathrm{Marks}$ )
Marks CO BL

## UNIT-I

2. a) Define Literals. Write different types of literals with examples. 5M CO1 L1
b) Explain the type conversion of operands. How will you write a program to convert a temperature in degrees Fahrenheit into an equivalent temperature in degrees Celsius?

## OR

3. a) Compare sequential, selection, and iterative control.

6M CO1 L2
b) Show the effect of operator precedence in Boolean operators.

6M CO1 L1
UNIT-II
4. a) With a neat diagram, state the use of function routine in a programming language.

6 M CO 2 L 3
b) Identify the difference between Value-Returning and non-Value-Returning functions with suitable examples.

6 M CO 2 L 3

## OR

5. a) State the importance of Module in Python. Explain, how can you use Modules in your program explain with an example Program

8M CO2
b) How will you check the contents of a string using a Python program code?

4M CO2

## UNIT-III

6. a) Discuss the usage of abstract classes and interfaces in Python.
b) Explain Python Built-in Exceptions.

6 M CO3 L3
$6 \mathrm{M} \mathrm{CO3} \mathrm{~L} 1$

## OR

7. Analyze the concepts of inheritance and polymorphism. State the difference between these two techniques and write the code implementations.

12M CO3 L2

## UNIT-IV

8. a) With a neat diagram, show the implementation of the stack ADT for the following values. 713451928 -1

10M CO4 L3
b) List the applications of stack.

2M CO4 L1

## OR

9. Prove that "A queue is also known as a first-in, first-out (FIFO) list", with an example and write appropriate functions.

12M CO4 L5

## UNIT-V

10. a) Build an AVL tree with the following values:
$\{15,20,24,10,13,7,30,36,25,42,29\}$.
6M CO5 L6
b) Differentiate binary tree and binary search tree with example trees.
$6 \mathrm{M} \mathrm{CO5} \mathrm{~L} 1$

## OR

11. a) Consider the binary search tree below and show the resulting tree after deleting each of the following keys: 14,52 , and 39.

b) Explain the balancing factor of AVL tree.

8M CO5 L3
4 M CO5 L1
| B.Tech. || Semester Supplementary Examinations December 2023

## Engineering Drawing

(Common CSE, AI\&DS, Al\&ML, CSE(AI) and CSE(DS))
Max. Marks: 70
Time: 3 Hours
Answer five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks)

## UNIT-I

1. a) Construct a regular pentagon and hexagon by general method.
b) Bisect a straight line $A B$ of length 75 mm .

CO1

## OR

2. A fixed point 70 mm from fixed straight line. When the distance between point from F and the distance between point from directrix is $3 / 4$. Name the curve and draw the curve at least 9 plots and also draw tangent and normal at a point 60 mm from $F$.

14M CO1 L1

## UNIT-II

3. The top view of a 75 mm long line $A B$ measures 65 mm , while the length of its front view is 50 mm . It's one end $A$ is in H.P. and 12 mm in front of the V.P. Draw the projections of $A B$ and determine its inclinations with the H.P. and the V.P.

14M CO2 L1

## OR

4. Two points $A$ and $B$ are in the HP. The point $A$ is 30 mm in front of the VP, while $B$ is behind the VP. The distance between their projectors is 75 mm and the line joining their top views makes an angle of $45^{\circ}$ with reference line. Find the distance of point B from the VP.

## UNIT-III

5. Draw the projections of a circle of 50 mm diameter, having its plane vertical and inclined at $30^{\circ}$ to the VP. Its centre is 30 mm above the HP and 20 mm in front of the VP.
6. A circular plate of negligible thickness and 50 mm diameter appears as an ellipse in the front view, having its major axis 50 mm long and minor axis 30 mm long. Draw its top view when the major axis of the ellipse is horizontal.

## UNIT-IV

7. A hexagonal prism is resting on one of the corners of its base on the HP. The longer edge containing that corner is inclined at $45^{\circ}$ to the base. The axis of the prism makes an angle of $30^{\circ}$ to the V.P. Draw the projections of the solid.

14M CO4

## OR

8. A hexagonal prism of base side 30 mm and axis height of 60 mm rests on one of its corners on HP. The axis is inclined at $40^{\circ} \mathrm{HP}$ and its base edge is inclined at $30^{\circ}$ to VP. Draw its projections.
$14 \mathrm{M} \mathrm{CO4} \mathrm{L2}$

## UNIT-V

9. Draw the isometric view of a square prism with the side of the base 40 mm and length of the axis 70 mm . when its $\begin{array}{lll}\text { axis is } & \text { i) vertical } & \text { ii) horizontal }\end{array}$

## OR

10. Draw the front view, top view and side view for the solid shown in the figure 1.


Figure 1.
$14 \mathrm{M} \cos \mathrm{L} 1$ *** End ***

