Ha	all ⁻	Ticket Number :													_
<u> </u>	da	. 10013								<u> </u>				R-11 / R-13	
Code: 1GC13 B.Tech. I Year Supplementary Examinations December 2017															
	Engineering Chemistry														
	(Common to All Branches)														
Max. Marks: 70 Time: 3 Hours Answer any five questions												\$			
	All Questions carry equal marks (14 Marks each)														
1. a	a)	How are the temp	orary	/ har	dnes	s and	l perr	nane	nt ha	rdne	ss of	wate	er det	ermined?	7M
k	 What is desalination? Mention some methods available for desalination. With a neat diagram explain desalination by reverse osmosis. 												7M		
2. a	a) Explain acid-base titration conduct metrically.												7M		
k	c)	Explain the constr	ructic	n an	d wo	rking	of H	2 -O 2 1	uel c	ells.					7M
3. a	a) Explain the mechanism of chemical and electrochemical corrosion. 71												7M		
k	c)	What is sacrificial	anoo	de? N	/lenti	on its	role	in th	e pre	venti	on of	corre	osion		7M
4. a	a) Describe the free radical mechanism of addition polymerization with a suitable example. 7M												7M		
k	 b) Describe the preparation, properties and uses of following polymers. (i) Bakelite, 														
		(ii) Teflon.													7M
5. a	a)	Explain the classi	ficatio	on of	expl	osive									
		(i) Primary or		•	•										
	-)	(ii) Low explo		-	-										7M
Ľ))	Explain the follow (i) Flash and	• ·	•		ofiuc	oricar	its.							
		(ii) Cloud and		-											7M
6. a	a)	What is phase rul	e? E	xplaiı	n the	vario	ous te	erms	involv	/ed ir	h it.				6M
k	c)	With a neat diagra	am e	xplaiı	n lead	d- silv	/er sy	/sten	۱.						8M
7. a	a)	Describe the Otto	-Hoff	man	meth	nod o	f cok	e ma	nufac	ture	and	the re	ecove	ery of various by	
		product.													7M
k	c)	Explain Orsat me	thod	of flu	e ga	s ana	lysis								7M
8. a	a)	Write notes on													
		(i) White cerr (ii) Water prod		mant											8M
ł	c)	What are the chai				000	d refi	acto	∿? W	/rite :	a not	e on (carbo	prundum.	6M
ĸ	-,		2010		5 51 6	. 900	a . on	2010	<i>.</i>		2 1100	0.011			0.01

Hall Ticket Number :						

Code: 1GC12

R-11 / R-13

B.Tech. I Year Supplementary Examinations December 2017

Engineering Physics

(Common to All Branches)

Max. Marks: 70

Time: 3 Hours Answer any **five** questions All Questions carry equal marks (14 Marks each) ******* 1. a) Explain interference in thin films by reflected light. 3M b) Explain an experimental method of determination of wavelength of spectral lines of a given source of monochromatic light using plane diffraction grating. 7M c) Explain construction and working of a Nicol prism with neat diagram. 4M 2. a) What are Miller Indices? Explain the steps involved in calculation of it with an 4M example. b) With a neat sketch, explain the Powder method to determine the crystal structure. 6M c) Derive an expression for interplanar spacing in orthogonal system. 4M 3. a) Derive time-independent Schrodinger's wave equation. 6M b) Give the classification of solids into conductors, semiconductors and insulators on the basis of band theory of solids. 4M c) An electron is bound in one-dimensional box of size 4 X 10⁻¹⁰ m. Find the minimum energy, second and third existed states? 4M 4. a) Explain how a PN junction diode acts as a Light Emitting Diode. 4M b) What is Hall effect? Derive an expression for Hall coefficient for n-type semiconductor. Mention its applications. 7M c) Differentiate direct and indirect band gap semiconductors with examples. 3M 5. a) What are soft and hard magnetic materials? Give their characteristic properties and applications. 4M b) Describe Lorentz method to calculate the local field in dielectrics. 7M c) Write short note on Ferroelectric materials. 3M 6. a) What are Type-I and Type-II superconductors? Explain. 4M b) With neat diagrams, describe the construction and working of Ruby laser. 6M c) Mention applications LASERS in industry and Medical field. 4M 7. a) Derive the expression for acceptance angle and Numerical Aperture of an **Optical fibre** 5M b) Derive the expression for acceptance angle and Numerical Aperture of an **Optical fibre** 5M c) Draw the block diagram of optical fibre communication system and explain the function of each block. 4M 8. a) In detail explain one of the method of fabrication of Nanomaterials. 5M b) Discuss about surface to volume ratio and quantum confinement. 4M c) Mention applications of carbon nanotubes and nanomaterials. 5M

Hall Tic	ket Number :												[
Code: 1	IGC14	1		1		1	1		1	1	1	L	R-11 / R	·13
B.Tech. I Year Supplementary Examinations December 2017 Mathematics-I														
Max. N	(Common to all branches) Max. Marks: 70 Answer any five questions												lours	
	AI	l Que	estio	ns co	arry e	equa	l ma ****	rks (14 M	\arks	eac	h)		
1. a)	Solve $\cos^2 x \frac{d}{dx}$	$\frac{y}{x} + y$	= ta	n <i>x</i>										4M
b)	Find the orthogonal trajectories of the family of cardioids $r = a(1 - \cos_{\pi})$ where <i>a</i> is the parameter.											5M		
c)	of the air being $40^{\circ}C$. What will be the temperature of the body after 40											5M		
2. a)	Solve $\frac{d^2 y}{dx^2} - 6\frac{dy}{dx} + 9y = 6e^{3x} + 7e^{-2x} - \log 2$.										7M			
b)	Solve by the method of variation of parameters $\frac{d^2y}{dx^2} + y = Co \sec x$											7M		
3. a)	Verify Rolle's Theorem for $f(x) = x(x+3)e^{-\frac{x}{2}}$ in $[-3, 0]$											7M		
b)	Find the maxir	num	and	minir	num	valu	es of	$x^{3} +$	$3xy^2$	² –15	x^2 –	$15y^2$	+72x.	7M
4. a)	Trace the curv	y^2 y ²	(<i>a</i> –	x) =	$x^2(a$	+ <i>x</i>)								7M
b)	The part of the rectum (ii) about	•				•						.,		7M
5. a)	Change the or	der c	of inte	egrat	ion iı	\int_{0}^{4a}	$\int_{x^2/4a}^{2\sqrt{ax}}$	dydz	r an	d her	nce e	evalu	ate.	7M
b)	Evaluate $\int_0^a \int_0^x$	$\int_0^{x+y} e^{-\frac{y}{2}} e^{-$	e ^{x+y+}	^z dzd	ydx									7M
6. a)	Find the Lapla	ce tra	ansfo	orm c	of $f($	t) = t	t - 1 -	t+t	1 , t	≥0				7M
b)	Find the invers	se La	plac	e trai	nsfor	m of	$\frac{2s}{4s^2}$	$\frac{-5}{+25}$	$+\frac{4s}{9}$	$\frac{-18}{-s^2}$				7M
7.	Solve the diffe	erenti	ial e	quatio	on y	^{,11} + :	y=t,	y((0) = 1	l, y	¹ (0) =	=2 u	using Laplace	14M
8.	Verify Stokes upper half of th													14M

F	lall	I Ticket Number : R-11 / R-13										
C	od	le: 1GC15										
		B.Tech. I Year Supplementary Examinations December 2017										
		(Common to CSE & IT)										
Ν	Ла	ix. Marks: 70 Time: 3 Hour	ſS									
		Answer any five questions All Questions carry equal marks (14 Marks each)										
		$\begin{bmatrix} -1 & -3 & 3 & -1 \end{bmatrix}$										
. 8	a)	Reduce the matrix to Echelon form and find the rank of $A = \begin{bmatrix} 1 & 1 & -1 & 0 \end{bmatrix}$										
		Reduce the matrix to Echelon form and find the rank of A= $\begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix}$										
			7									
Ł	b)	Solve the equations $x + y + z = 9$, $2x + 5y + 7z = 52$ and $2x + y - z = 0$	7									
		$\begin{bmatrix} 2 & 2 & 0 \end{bmatrix}$										
•		Find the Eigen values and corresponding Eigen vectors of the matrix $A = \begin{bmatrix} 2 & 5 & 0 \end{bmatrix}$										
		Find the Eigen values and corresponding Eigen vectors of the matrix $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$	14									
. 8	a)	Prove that the Eigen values of a real symmetric matrix are real.	6									
k	b)	Reduce the quadratic form to $7x^2 + 6y^2 + 5z^2 - 4xy - 4yz$ to the canonical form.										
. 8	a)	Find the roots $e^x \sin x = 1$ using the Newtonian Raphson's method										
Ł	o)	Find $y(54)$ given that $y(50) = 205$ $y(60) = 225$ $y(70) = 248$ and $y(80) = 274$ using										
		Newton's forward difference formula	7									
. 8	a)	Find the parabola of the form $y = ax^2 + bx + c$ passing through the points (-1, 2),										
		(0,1) and (1,4)	7									
Ł	o)	Use the method of least squares then find the best fitting straight line to the data										
		given below:										
		X: 5 10 15 20 25	7									
		Y: 15 19 23 26 30	, ,									
. 8	a)	Evaluate $\int_{0}^{t} t \sin t dt$ using the Trapezoidal rule	7									
			1									
k	o)	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ using Simpson's $\frac{3}{8}$ rule	-									
	,	0	7									
. 8	a)	Using modified Euler method find $y(0.2)$ and $y(0.4)$ given $y' = y + e^x$, $y(0) = 0$.	7									
k	b)	Using the Range-Kutta method, find $y(0.2)$ for the equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$. take										
		h = 0.2	7									
. 8	a)	Express $f(x) = e^x$ as Fourier series in $(-f, f)$	7									
k	b)	Find the half range cosine series of a function of $f(x) = x$ $0 \le x \le f$	7									
		***	-									

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code: 1G111

R-11 / R-13

Time: 3 Hours

B.Tech. I Year Supplementary Examinations December 2017 **Programming in C and Data Structures**

(Common to CSE & IT)

Max. Marks: 70

Answer any **five** questions

All Questions carry equal marks (**14 Marks each**)

- 1. a) Explain the advantages and disadvantages of using high level languages over machine level languages.
 - b) What is an algorithm? Write an algorithm for reversing the digits of an integer and checking for palindrome or not?
- 2. What is the purpose of a printf() and scanf() statements? Write a C program to find area of a circle.
- 3. a) Explain function with arguments and no return value with an example.
 - b) What is a built in function? Explain any two built in functions.
- 4. a) What is pointer to an array? Explain with an example.
 - b) Write a program to compute the largest number and its position using pointer.
- 5. Write a C program to demonstrate the use of array of structures.
- 6. What is Stack? Write operations of stack and Write a program to implement stack using linked list.
- 7. Discuss the insertion and deletion operations of a singly linked list.
- 8. What is sorting? Write an algorithm for recursive quick sort and perform quick sort on the following list? 38 81 22 48 13 69 93 14 45 58 79 72

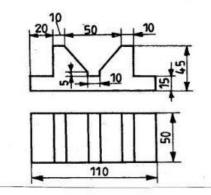
Hall Ticket Number :						
• • · · · · · · · ·						K-II/K-IJ

Code: 1G513

B.Tech. I Year Supplementary Examinations December 2017

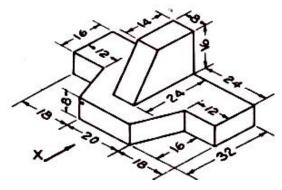
Engineering Drawing

(Common to EEE, ECE, CSE and IT)


Max. Marks: 70

Answer any **five** questions

All Questions carry equal marks (14 Marks each)



- The vertex of a hyperbola is 65 mm from its focus. Draw the curve if the eccentricity is 3/2. Draw a normal and a tangent at a point on the curve, 75 mm from the directrix.
- Draw a hypocycloid of a circle of 40 mm diameter which rolls inside another circle of 200 mm diameter for one revolution. Draw a tangent and normal at any point on it.
 14M
- 3. The front view of a line AB, 80 mm long, measure 55 mm while its top view measures 70 mm. End A is in both HP and VP. Draw the projections of the line and find its inclinations with the reference planes. Also locate the traces.
- A regular hexagonal lamina with its edge 50 mm has its plane inclined at 45° to HP and lying with one of its edges in HP. The plane of one of its diagonals is inclined at 45° to XY. The corner nearest to VP is 15 mm in front of it. Draw its projections 14M
- 5. Hexagonal Prism, having a base with a 30 mm side and 65 mm long axis, has an edge it's base in the VP Such that the axis is inclined at at 30^o to the VP and Parallel to the HP. Draw its Projections?
- Draw isometric view of a hexagonal prism having a base with 30 mm side and a 70mm long axis resting on its base on the HP. With an edge of the base parallel to the VP when (a) using Box Methods (b)using Off-set Method?
- 7. Draw the isometric view of the given orthographic projection of the object?

14M

8. Draw the front view, top view and right side view of the object shown below (dimensions in mm).

14M

14M

Time: 3 Hours

14M