	Hall Tick	et Number :								[
С	ode: 201	DC11T						·		R-20		
-		A. I Semester	Regu	Jar &	Suppl	emento	ary Ex	amin	ations	June 2022		
			Pr	robal	bility a	nd Sta	tistics	5				
	Max. Ma						(Time: 3 Ho		
Ρ	Answer ar	ny five full quest	ions dy	y choc	sing on ****	•	on from	n eaci	n Unit (s	$3 \times 12 = 60 Mar$	KS J	
										Marks	СО	E
				l	JNIT-I							
a)) A prob	lem is given to	four s	tudent	s A, B,	C, D. P	robabili	ity of s	solving t	hem		
	indepei	ndently are $\frac{2}{3}, \frac{2}{5}$	$,\frac{1}{4},\frac{3}{4}.$	If all of	f them tr	y to solv	e the p	roblem	, what is	s the		
		ility that problem	• •								CO1	I
b)) A rando	om variable X ha	as the f	followi	ng proba	ability fur	nction					
	X=x	1 2		3	4	5	6					
	P(X=x	.) k 3k		5k	7k	9k	1	1k				
	Find (i)	k (ii) Mean (iii	i) Varia	ance (iv) P(1<	X<5)				8M	CO1	
					OR							
a)	•	A contains 2 whi				•						
		One ball is drawn nd the probability					•		found t		CO1	
b)	balls. C red. Fir	orie tailrobdrawi	n at rai / that t	nd he Of	a randor	m variabl	e is aiv	ven hv		OIVI	001	
ο,	If the p	rcbaDility densit = kx2e-x when	/ funct	ion						6M	CO1	
							, vana			OW	001	
,					JNIT-II							
a)	•	bbability that the t of 6 bulbs (i) at				-			•	-		
		00 days.	16451			(iii) grea		1 4 WIII	De Havi	-	CO2	
b)		st on 2000 electi	ic bulb	os, it w	as found	d that the	e life of	a part	icular m			
		ormally distribut			•							
		on 40 hrs. Estim				•		· i) mor	e than 2		CO2	
	nis ii) b	etween 1920 ar	10 2020	0 111) 16		1960 11	5			6M	002	
	Four co	oins are tossed	160 tim	nes Th		er of tim	es x he	ads o	cur is a	iven		
	below.			100. 11			00 / 110					
		Х		0	1	2	3	4	ļ			
		No.of times	;	8	34	69	43	6	;			
	Fit a bir	nomial distributio	n to this	s data	on the h	ypothesis	s that c	oins ar	e unbias	ed. 12M	CO2	
					NIT-III							
	A popu	lation consists c	f six nu			.16.20.24	4. Cons	sider a	I sample	es of		
	• •	which can be dra							•			
	.,	e population me										
	()	e population star mean of sampli				ane						
	. ,	e standard devia	•				of mear	าร.		12M	CO3	
				1-	OR							

Code: 20DC11T

8M CO3 L4

4M CO3 L4

6M CO4 L4

L4

- 6. a) To estimate the average time it takes to assemble a certain computer components, the industrial engineer at an electronics firm timed 40 technicians in the performance of the task, getting a mean of 12.73 minutes and a standard deviation of 2.06 minutes.
 - (i) What can we say with 99% confidence about the maximum error if 12.73 is used as a point estimate of the actual average time required to do the job.
 - (ii) Use the given data to construct a 99% confidence interval.
 - b) It is desired to estimate the mean time of continuous use until an answering machine will first require service. If it can be assumed that standard deviation is equal to 60 days, how large a sample is needed so that one will be able to assert with 90% confidence that the sample mean is off by at most 10 days.

UNIT–IV

- 7. a) In a sample of 600 students of a certain college 400 are found to use ball pens. In another college from a sample of 900 students 450 were found to use ball pens. Test whether 2 colleges are significantly different with respect to the habit of using ball pens. take level of significance as 5%
 - b) The following table gives the number of aircraft accidents that occurred during the six days of the week. Find whether the accidents are uniformly distributed over the week.

	14		DR		15	14		74	
No.of accidents	14	18	12	11	15	14	6M CC	14	
Days	Mon	Tue	Wed	Thurs	Fri	Sat			

8. Two independent samples 8 and 7 items respectively had the following values of the variables.

Sample I	9	11	13	11	16	10	12	14
Sample II	11	13	11	14	10	8	10	

Do the estimates of population variance differ significantly at 5% level of significance 12M CO4 L4

- 9. Patients arrive at a hospital at random with a mean arrival rate of 3 per hour. The department is an average 15 minutes with each patient, actual consulting times being exponentially distributed. Find
 - (i) The proportion of time that the doctor is idle
 - (ii) The mean number of patients waiting to see the doctor
 - (iii) The probability of there being more than 3 patients waiting
 - (iv) The mean waiting time for patients

OR

- 10. A super market has a single cashier. During peak hours, customers arrive at a rate of 20 customers per hour. The average number of customers that can be processed by the cashier is 24 per hour. Calculate
 - (i) The probability that cashier is idle
 - (ii) The average number of customers in the queuing system.
 - (iii) The average time a customer spends in the system
 - (iv) The average time the customers are in the queue
 - (v) The average time a customer spends in the queue waiting for service. 12M CO5 L3

END

12M CO5 L3

	Hal	Il Ticket Number :			
			R-20		
	Coc	de: 20DF13T M.C.A. I Semester Regular & Supplementary Examinations Jun	e 2022		
		Relational Database Management Systems			
			ne: 3 Hou		
	Ans	wer any five full questions by choosing one question from each unit (5x12	= 60 Mark	s)	
			Marks	со	в
		UNIT–I			
1.	a)	State the advantages of DBMS over file system.	7M	1	
	b)	Mention the roles of a Database Administrator	5M	1	
		OR			
2.		Explain the term aggregation in an ER model? Develop an ER diagram usi aggregation that captures the following information: Employees work for project An employee working for a particular project uses various machinery. State a options you make. Also discuss about the ER diagram you have designed.	ts.	2	
		UNIT–II			
3.		Explain the Unary and Binary Operators of Relational Algebra with an examp			
		each.	12M	2	
		OR Construct the Tuple Deletional Calculus expressions for the following other	~		
4.		Construct the Tuple Relational Calculus expressions for the following schem SUPPLIER (SID, SNAME, CITY) PARTS (PID, PNAME, COLOR)	a.		
		ORDERS (SID, PID, QUANTITY)			
		(a) Find the parts supplied by the suppliers who stay in Paris.(b) Find the names of suppliers who supply green and blue parts.			
		(c) Find the supplier IDs of those, who supply all parts.			
		(d) Find the names of suppliers and the parts supplied by them.	12M	4	
		UNIT–III			
5.	a)	Explain the aggregate functions in SQL	6M	3	
	b)	What is Referential integrity? Explain the integrity constraints in SQL	6M	3	
	、	OR		•	
5.	a)	What is lossless decomposition? Why should you normalize a relation	7M	3	
	b)	Differentiate 3NF and BCNF	5M	2	
7	2)	UNIT-IV	5M	5	
7.	a) b)	When do, two transactions conflict. Explain conflict serializability	эм 7М	5 5	
	b)	OR	7 111	5	
3.		Explain log based recovery	12M	5	
<i>.</i>			12101	0	
9.		Explain Static hashing techniques. Implement extendable hashing for t following problem, where each bucket can hold upto 3 search key values Search Key Values : 2, 3, 5, 7, 11, 17, 19, 23, 29, 31	he		
		Hash Function: $h(k) = k \mod 8$	12M	5	
		OR			
).		Differentiate a B Tree and B ⁺ Tree file indexing.	6M	5	
		Construct a B ⁺ Tree of degree 3 for the following values			
		20, 16, 3, 21, 9, 7, 23, 15, 11	6M	5	
		****END****			

Ha	all Ti	cket Number :]			
Cor	10· 2	20DC12T											_		R-20	
		C.A. I Semest	er Re	egu	lar a	& Su	pple	eme	enta	ry Ex	kam	inat	ion	s June	2022	
				-			Cor			-						
		Aarks: 60										. 1.			e: 3 Ho	
Ans	wer	any five full que	estion	is dy	' CNC		3 ON6		estio	n tro	mec	ich i	Juit (5812 =	60 Mar	KS)
														Marks	СО	BL
						UNI	ſ _									
1.		Define Commun		on. \	What	are	the e	elem	ents	in th	e pro	ocess	s of	4014	004	
		communication?				OR	2							12M	CO1	L3
2.		Write a note on	the o	bject	ives	-		ples	of Co	mmu	unicat	tion.		12M	CO1	L3
						UNIT	'-II									
3.	a)	What are the ge			-		-			-	-	-		6M	CO2	L2
	b)	Write the signific	cance	e of N	lon-∖	/erba	l com	nmun	icatio	n in	the T	echn	ical	6M	CO2	L2
		arena.				OR								OIVI	002	LZ
4.		Explain the follo	wing	elen	nents	-		entati	ion.							
		a) Pla		• •			• •									
		b) Pre c) Or	•	• .			n (4) ition ((4)						12M	CO2	L2
			gainz	ing c	_	UNIT		()						12101	002	LZ
5.	a)	You have receiv	/ed a	prod				ged o	condi	tion.	Write	e a le	tter			
		of complaint em	phas	izing	the r	need	of gre	eater	care					6M	CO4	L2
	b)	What are Etique	ttes?	Disc	cuss			etiqu	ettes.					6M	CO4	L2
6.	a)	You are a Proc	namr	mor	in Ta			dra (Comr	anv	com	nnsa	an			
0.	a)	email regarding							•			pusc	an	6M	CO4	L3
	b)	Imagine you are	a Le	ead c	of a T	eam	of AE	BC co	ompa	ny. Is	ssue	a me	emo			
		analyzing reaso	ns fo	r can				mee	ting.					6M	CO4	L3
7		Muite - buief a st		4h a 4			–IV									
7.		Write a brief not a) Significa				•	ritina	in ni	ofess	siona	lare	na				
		b) List out t			•		•	•				iu.		12M	CO5	L3
_						OR					_					
8.		The principal of teachers and t	-		-											
		pandemic Covid														
		developed. Write	e a co	omm	ittee'	s rep	ort.							12M	CO5	L3
						UNIT										
9.	a) b)	Sketch the struc						e a F	lesun	ne of	your	profi	ile.	6M	CO3	L3
	b)	Describe the Pre	=-inite	i vie\	ທ ວເກ	ategi OR								6M	CO3	
10.		In what way Gro	up Di	iscus	sion			ecom	nes ai	n imp	ortar	nt asp	bect			
		in the selection	-	cess	of	recrui	itmen	t? E	nlist	the	featu	res a	and	4011	000	
		techniques of G	D.			**:	**EN	D***	*					12M	CO3	L3
						-	EIN	0								

[На	II Ticket Number :			
	² od	e: 20DF14T		R-20	
		M.C.A. I Semester Regular & Supplementary Examination	is June	2022	
		Computer Organization			
		x. Marks: 60		: 3 Hou	
	Ansv	ver any five full questions by choosing one question from each unit	(3812 -	60 MUIK	.5]
			Marks	CO	BL
1.	a)	What is a number system? Explain different types of number systems.	6M	1	2
	b)	Define Combinational circuits and explain its Characteristics.	6M	1	- 1
	,	OR			
2.	a)	Explain Boolean Algebra with suitable examples.	6M	2	2
	b)	What is an adder? Explain half adders and full adders.	6M	2	2
		UNIT–II			
3.	a)	Explain the concept of memory hierarchy with the help of the			
		diagram.	6M	3	2
	b)	Illustrate the memory address map and functionality.	6M	3	3
4.	a)	OR What are the differences among direct mapping and associative			
ч.	u)	mapping?	6M	3	3
	b)	Describe the ROM chip? How does a ROM chip work?	6M	2	3
		UNIT-III			
5.	a)	Explain Basic CPU Organization? Describe assembler directives.	6M	2	1
	b)	Explain the concept of Intel 8086 CPU architecture in detailed.	6M	2	2
-		OR			
6.		What is an addressing mode? Discuss in detail about different addressing modes with suitable examples.	12M	2	1
		· · ·	12101	2	•
7.	a)	UNIT-IV Explain Programming with assembly language instructions.	6M	2	1
7.	a) b)	Describe the Flag transfer. Explain arithmetic and logical instructions	OIVI	Z	I
	0)	with examples?	6M	2	3
		OR			
8.	a)	Describe conditional and unconditional transfer with examples.	6M	3	3
	b)	Explain the shift and rotate instructions with examples.	6M	3	3
		UNIT-V			
9.	a)	Explain priority interrupts by using daisy chaining methods.	6M	3	2
	b)	Define address sequencing and give examples.	6M	2	1
10.		OR What is DMA2 How the DMA controller works with a peat diagram?	12M	5	3
10.		What is DMA? How the DMA controller works with a neat diagram? ****END****	I ZIVI	5	3
		2		Page 1	of 1

(all Ticket Number :	R-20		
•	.00	M.C.A. I Semester Regular & Supplementary Examinations June	2022		
		Data Structures and Algorithms			
		12. Marks: 60 wer any five full questions by choosing one question from each unit (5x12 =	e: 3 Hou 60 Mark		
	/ 1115		00 Mark		
			Marks	CO	E
	a)	UNIT-I Explain the importance of data structures used in various algorithmic designs			
•	a)	with suitable examples.	6M	1	
	b)	Illustrate Factorial using iterative and recursive algorithm.	6M	1	
		OR			
•	a)	Define the general rules for running time calculation.	4M	1	
	b)	Illustrate asymptotic notion using examples.	8M	1	
				•	
	a) h)	Define stack? Demonstrate Stack ADTs with examples.	6M	2	
	b)	Develop an algorithm to Evaluate an Expression using stacks and explain with an example.	6M	2	
		OR	-		
	a)	Give ADT for Single Linked list.	6M	2	
	b)	Illustrate insert, delete and display operations in a linked list.	6M	2	
		UNIT–III			
	a)	Define hashing? Explain different hashing functions.	4M	3	
	b)	Illustrate separate chaining collision resolution technique with example.	8M	3	
	\sim	OR Define Threaded binary tree? Give the node structure for threaded binary tree?	4M	3	
	a) b)	Illustrate threaded binary tree with examples.	41VI 8M	3	
	0)		OW	0	
	a)	Explain AVL tree rotations.	6M	4	
	b)	What is the meaning of height balanced tree? How rebalancing is done in			
		height balanced tree.	6M	4	
		OR			
	a)	Define Graph. Discuss about different graph representations.	6M	4	
	b)	Explain Breadth First Search traversal of Graph using an example.	6M	4	
	a)	Demonstrate selection sort with suitable example.	6M	5	
	b)	Illustrate Radix sort with the help of example.	6M	5	
	,	OR			
	a)	Explain Merge Sort algorithm to sort an integer array in an ascending order.	6M	5	
	b)	Evaluate Merge Sort for best, average and worst case.	6M	5	

		all Ticket Number :														R-20)	
	М	de: 20DF11T M.C.A. I Semes Mathe ax. Marks: 60 Iswer any five full qu	ma	lica	l Fo	unc	d ati ng o	ons ne q	of C uesti	Con	າpບ	ter	Sc	ien	ce ⊺	ne 2022 ime: 3 H	2 Iours	I
							***	*****	¢							Marks	со	BL
							IT–I					_						
1.		Define Statement a Table		·					•							6M	CO1	L3
	b)	Obtain the princip Statement (P^~Q /		•				forn	n of	the	giv	en	Co	mpo	und	6M	CO1	L4
0		Define Questifiers	بر ام مر		ما الم		R		4 0	1:f:			Γ.,					
2.	a)	Define Quantifiers a Show that (R V S) f ~H,~H (A ~B)	ollow		gicall	•	m th							-	es.	6M 6M	CO1 CO1	L3 L2
		~11,~11 (A ~D)	a	nu		,	() T–II									OIVI	COT	LZ
3.	a)	Define binary relatio	n? W	rite t	he pi			of bin	ary r	elatic	on wi	th ai	n e	xamp	le.	6M	CO2	L3
	b)	Define partition set partition of A	? pro	ove tl	hat a	iny e	equiv	alend	ce re	latior	n R (on A	\ in	duce	es a	6M	CO2	L3
4.	a)	Let A={ 1,2,3,19, aRb if and only if a	-				-								-	6M	CO2	L1,L2
	b)	Let A={1,2,3,4,6,8, if and only if a b. Di	•			gram	Ì		al orc	dering	g rel	atio	n R	by a	aRb	6M	CO2	L1,L2
5.	a)	Define the terms C	ombii	natio	ns &		T–III muta		with	exa	mple	es.				6M	CO3	L3
	b)	How many number repetitions are allow	s car	n be							•		6, 8	8, 9 if	no	6M	CO3	L4
6.	a)	How many commit from 12 Students	tees	of fi	ve w	/ith a	a giv	ven C	hairp	perso	on ca	an t	be	selec	ted	6M	CO3	L4
	b)	In how many ways So that none of the				, DC	DG, F	PUN d	0	•			e p	ermi	tted	6M	CO3	L4
7.		Solve the recurrence and a1=8	e rel	atior	an ·		T–IV ₁ - 6		= 0 fo	or n	2 gi	iven	tha	at a _{o=}	= -1	12M	CO4	L1
						0	R											
8.	a)	Find the sequences	s gen	erate	ed by	the	follo	wing	func	tions	s: (3	+ x)) ³			6M	CO4	L4
	b)	Solve the recurrence	e rel	ation	3a _n .		4a _n = T–V	= 0 , r	n0,	a ₁ =	5.					6M	CO4	L4
9.	a)	Define Graph and e	expla	in va	rious	s type	es of	repr	esen	tatio	n of a	a Gi	rap	h		6M	CO5	L3
	b)	Define and explain	Bipa	rtite	Grap			eat Di	agra	m						6M	CO5	L3
0	c)	Define and Fundation															6 6 -	
0.	a) b)	Define and Explain Define Spanning Tr of spanning tree by	ee a	nd e	xplai	n ste	ep by	v step	proo	cedu	re fo	r the	e d	eriva	tion	6M 6M	CO5 CO5	L3 L3
							***E	ND**	*									