	F	Hall Ticke	t Number	:													
	Co	ode: 19D	C11T		1			1	1	J J.	I.				R-19		
	M.C.A. I Semester Supplementary Examinations June 2022																
	Probability and Statistics																
	Max. Marks: 60 Answer any five full questions by choosing one question from each unit (5x12 = 60 Marks)																
	7.0				,	enee	-	****	05110		1100			/// Z	oo man		
					Γ	_									Marks	CO	BL
1.	2)	A proble	em is giver	in the second			JNIT-I		Dro	hahili	ity of	colv	ina t	hom			
1.	a)		dently are								-		-				
			ity that prol	5 5 1				iy to c		uic p		, III, VV	nario	5 the	4M	CO1	L2
	b)	•	m variable				ng prob	ability	, func	ction						001	
	,	X=x	1	2	3		4		5	6	;						
		P(X=x)	k	3k	5	k	7k	ę	9k	1	1k						
		Find (i)	(ii) Mear	n (iiii) V	arian	nce (iv) P(1-	<x<5)< td=""><td></td><td>u.</td><td></td><td></td><td></td><td></td><td>8M</td><td>CO1</td><td>L3</td></x<5)<>		u.					8M	CO1	L3
							OR										
2.	a)	•	contains 2					•									
	balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that the red ball drawn is from bag B. 6M CC								CO1	L2							
	b)	balls. Or red. Find	the p a	rawn at bility th	at the	e of a	a rando	m var	iable	is giv	/en b	y					
			kx2e-x w				d (i)k (ii)Mear	n (iii)	Varia	nce				6M	CO1	L3
						U	JNIT–II										
3.	a)	•	pability tha									•					
		that out life of 10	of 6 bulbs (0 days	(i) at lea	ast or	ne (i	ii) none	(iii) g	reate	er thar	า 4 พ	vill be	havi	ng a	6M	CO2	13
	b)		on 2000 e	lectric b	oulbs	, it w	as four	d that	t the	life of	apa	articul	lar m	ake.	0111	002	LU
	,	was noi	mally dist	ributed	with	an	averag	e life	of 2	2040	hrs	and	stan	dard			
			n 40 hrs. E etween 192					-		irn for	r ı) m	ore th	han 2	2140	6M	CO2	13
		1110 11/ 000			.020	iii) ie	OR		,						0.01	002	20
4.		Four coi below.	ns are toss	ed 160	time	es. Th	ne numl	per of	time	s x he	eads	occu	r is g	iven			
			Х		0)	1	2		3		4					
			No.of ti	mes	8	3	34	69)	43		6					
		Fit a bind	omial distrib	oution to	this	data	on the l	nypoth	esis	that c	oins a	are ur	nbias	ed.	12M	CO2	L4
						U	NIT-III										
5.		• •	ation consis										•				
			population							e p	o p 0.10						
	(ii) The population standard deviation																
(iii) the mean of sampling distribution of means(iv) The standard deviation of sampling distribution of means.											12M	CO3	L3				
	OR																

Code: 19DC11T

8M CO3 L4

4M CO3 L4

6M CO4 L4

6. a) To estimate the average time it takes to assemble a certain computer components, the industrial engineer at an electronics firm timed 40 technicians in the performance of the task, getting a mean of 12.73 minutes and a standard deviation of 2.06 minutes.

- (i) What can we say with 99% confidence about the maximum error if 12.73 is used as a point estimate of the actual average time required to do the job.
- (ii) Use the given data to construct a 99% confidence interval.
- b) It is desired to estimate the mean time of continuous use until an answering machine will first require service. If it can be assumed that standard deviation is equal to 60 days, how large a sample is needed so that one will be able to assert with 90% confidence that the sample mean is off by at most 10 days.

UNIT–IV

- 7. a) In a sample of 600 students of a certain college 400 are found to use ball pens. In another college from a sample of 900 students 450 were found to use ball pens. Test whether 2 colleges are significantly different with respect to the habit of using ball pens. take level of significance as 5%
 - b) The following table gives the number of aircraft accidents that occurred during the six days of the week. Find whether the accidents are uniformly distributed over the week.

Days	Mon	Tue	Wed	Thurs	Fri	Sat				
No.of accidents	14	18	12	11	15	14		6M	CO4	L4
		(OR							

8. Two independent samples 8 and 7 items respectively had the following values of the variables.

Sample I	9	11	13	11	16	10	12	14
Sample II	11	13	11	14	10	8	10	

Do the estimates of population variance differ significantly at 5% level of significance 12M CO4 L4

- 9. Patients arrive at a hospital at random with a mean arrival rate of 3 per hour. The department is an average 15 minutes with each patient, actual consulting times being exponentially distributed. Find
 - (i) The proportion of time that the doctor is idle
 - (ii) The mean number of patients waiting to see the doctor
 - (iii) The probability of there being more than 3 patients waiting
 - (iv) The mean waiting time for patients

OR

- 10. A super market has a single cashier. During peak hours, customers arrive at a rate of 20 customers per hour. The average number of customers that can be processed by the cashier is 24 per hour. Calculate
 - (i) The probability that cashier is idle
 - (ii) The average number of customers in the queuing system.
 - (iii) The average time a customer spends in the system
 - (iv) The average time the customers are in the queue
 - (v) The average time a customer spends in the queue waiting for service. 12M CO5 L3

12M CO5 L3

	Н	all Ticket Number :			
		de: 19DF11T	R-19	}	
	00	M.C.A. I Semester Supplementary Examinations June 20	22		
		Mathematical Foundations of Computer Science			
		ax. Marks: 60 Inswer any five full questions by choosing one question from each unit (5x12 ********	ime: 3		
			Marks	со	BL
		UNIT–I			
1.	a)	Define Statement and Explain all the Connectivity's with the help of Truth			
		Table	6M	CO1	L3
	b)	Obtain the principal disjunctive normal form of the given Compound	~ 1 /		
		Statement (P [~] Q [~] R)v(Q ^A R)	6M	CO1	L4
•	、				
2.	a)	Define Quantifiers and write all the properties of Quantifiers with Examples.	6M	CO1	L3
		Show that (R V S) follows logically from the premises C V D ,(C V D) ~H,~H (A ~B) and (A ~B) (RVS)	6M	CO1	L2
			OIVI	COT	LZ
3.	a)	Define binary relation? Write the properties of binary relation with an example.	6M	CO2	L3
-	b)	Define partition set? prove that any equivalence relation R on A induces a	-		
	,	partition of A	6M	CO2	L3
4.	a)	Let A={ 1,2,3,19,20} , and R be the equivalence relation on A defined by			
		aRb if and only if $a - b$ is divisible by 5. Find the partition of A induced by R	6M	CO2	L1,L2
	b)	Let A={1,2,3,4,6,8,12}. On A , define the partial ordering relation R by aRb if and only if a b. Draw hasse diagram	6M	000	1410
			ON	CO2	L1,L2
5.	a)	Define the terms Combinations & Permutations with examples.	6M	CO3	L3
•	b)	How many numbers can be formed using the digits 1, 3, 4, 5, 6, 8, 9 if no	•	000	20
	- /	repetitions are allowed?	6M	CO3	L4
6.	a)	How many committees of five with a given Chairperson can be selected			
		from 12 Students	6M	CO3	L4
	b)	In how many ways can the 26 letters of the English alphabet be permitted So that none of the patterns CAR, DOG, PUN or BYTE occurs?	6M	CO3	L4
			ON	005	L4
7.		Solve the recurrence relation $a_n + a_{n-1} - 6a_{n-2} = 0$ for n 2 given that $a_0 = -1$			
		and a ₁ =8	12M	CO4	L1
		OR			
8.	a)	Find the sequences generated by the following functions: (3 + x) 3	6M	CO4	L4
	b)	Solve the recurrence relation $3a_{n+1} - 4a_n = 0$, n 0, $a_1=5$.	6M	CO4	L4
_		UNIT-V			
9.	a)	Define Graph and explain various types of representation of a Graph	6M	CO5	L3
	b)	Define and explain Bipartite Graph with neat Diagram	6M	CO5	L3
10	\sim	OR Define and Explain various properties of Tree	en 1	007	
10.	a) b)	Define and Explain various properties of Tree. Define Spanning Tree and explain step by step procedure for the derivation	6M	CO5	L3
	5)	of spanning tree by using Primes Algorithm	6M	CO5	L3
		END			