B.Tech. I Year Supplementary Examinations May 2018
 Engineering Drawing

Max. Marks: 70
Time: 3 Hours
Answer any Five questions
All Questions carry equal marks (14 Marks each)

1. The foci of an ellipse are 90 mm apart and the minor axis is 65 mm long. Determine the length of the major axis and draw half the ellipse by concentriccircles method and the other half by oblong method.
2. Construct a hypocycloid, rolling circle 50 mm diameter and directing circle 175 mm diameter. Draw a tangent to it at a point 50 mm from the center of the directing circle.
3. The ends of a line $P Q$ are on the same projector. The end P is 30 mm below the H.P. and 12 mm behind the V.P. The end Q is 55 mm above the H.P. and 45 mm in front of the V.P. Determine the true length and traces of PQ and its inclinations with the two planes.
4. A thin circular plate of 70 mm diameter is resting on its circumference such that its plane is inclined 60° to the H.P. and 30° to the V.P. Draw the projections of the plate.
5. A square pyramid, base 38 mm side and axis 50 mm long, is freely suspended from one of the corners of its base. Draw its projections, when the axis as a vertical place makes an angle of 45° with the V.P. When a pyramid is suspended freely from a corner of its base, the imaginary line joining that corner with the center of gravity of the pyramid will be vertical.
6. A pentagonal pyramid, base 30 mm side and axis 65 mm long, has its base horizontal and an edge of the base parallel to the V.P. A horizontal section plane cuts it at a distance of 25 mm above the base. Draw the isometric projection of retained part.
7. Draw isometric view of given orthographic views.

8. Draw front view, top view and side view of given isometric view.

14M

B.Tech. I Year Supplementary Examinations May 2018 Mathematics-I

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours

Answer any five questions

All Questions carry equal marks (14 Marks each)

1. a) Solve $\left(y^{4}+2 y\right) d x+\left(x y^{3}+2 y^{4}-4 x\right) d y=0$
b) The number N of bacteria in a culture grew at a rate Proportional to N . The value of N was initially 100 and increased to 332 in one hour. What would be the value of N after $11 / 2$ hours?
2. a) Solve $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6 y=e^{-2 x}+e^{-3 x}$
b) Solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$ by the Method of variation of Parameter
3. a) If $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$ and $z=r \cos \theta$ then find $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$
b) Find the minimum value of $x^{2}+y^{2}+z^{2}$, given that $a x+b y+c z=P$
4. a) Trace the curve $x^{3}+y^{3}=3 a x y$
b) Find the surface area of solid generated by the revolution of an arc of the catenary $\mathrm{y}=\mathrm{c} \cosh \frac{x}{c}$ about the x - axis.
5. a) By changing the order of integration to evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} d y d x$
b) Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} \mathrm{dx} . \mathrm{dy} . \mathrm{dz}$
6. a) Evaluate $L\left\{e^{t}\left(\cos 2 t+\frac{\sinh 2 t}{2}\right)\right\} \quad$ ii) Find $L^{-1}\left\{\frac{s+3}{s^{2}-10 s+29}\right\}$
b) Using convolution theorem find $\mathrm{L}^{-1}\left\{\frac{\mathrm{~s}}{\left(\mathrm{~s}^{2}+1\right)\left(\mathrm{s}^{2}+4\right)}\right\}$
7. a) Find $L\left\{\int_{0}^{t} e^{t} \cos 2 t d t\right\}$
b) Solve the differential equation $\frac{d^{2} x}{d t^{2}}-4 \frac{d x}{d t}-12 x=e^{3 t}$ given that $\mathrm{x}(0)=1$ and $x^{1}(0)=-2$ by using Laplace transform
8. a) If $\bar{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ then find $\operatorname{div} \bar{F}$ and $\operatorname{curl} \bar{F}$
b) Evaluate $\int_{C}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$ where C is the region bounded by $x=0, y=0$ and $x+y=1$ by Green's Theorem
\squareHall Ticket Number :
Code: 1G112
R-11 / R-13
B.Tech. I Year Supplementary Examinations May 2018
C Programming and Introduction to Data Structures
(Common to CE, EEE, ME and ECE)
Max. Marks: 70Time: 3 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each) $* * * * * * * * *$
9. a) Define Electronic computer system? 2M
b) Create a flowchart for greatest of three numbers 12M
10. a) Explain Control Statements? Write a c Program on exchange of two numbers? 12M
b) What is a datatype? 2M
11. Write a C program to perform addition of two matrices 14M
12. a) Define recursive Function? 2M
b) Write a C program to find the factorial of a given integer using recursive function 12M
13. Write a C program to display Employee information using structures with in structures 14 M
14. a) Define File modes 4M
b) Write a C program to copy the contents of one file to another 10M
15. Write a C program to implement Stack using Arrays 14M
16. Write a C program to implement Bubble sort technique 14M
\squareHall Ticket Number :
R-11 / R-13
Code: 1G311
B.Tech. I Year Supplementary Examinations May 2018 Electronic Devices and circuits(Common to EEE \& ECE)Time: 3 Hours
Max. Marks: 70
Answer any five questions
All Questions carry equal marks (14 Marks each)$* * * * * * * * *$
17. a) Explain the continuity equation for a concentration independent of ' x ' and with zero electric field. 8M
b) Explain in detail the phenomenon of Hall effect. 6M
18. a) Explain different types of junction breakdown that can occur in a reverse biased diode. Explain the characteristics of Zener diode with a neat sketch. 7M
b) Define diffusion capacitance and derive the relation for the same in terms of hole current I. 7M
19. a) Derive the efficiency and ripple factor of full wave rectifier. 7M
b) What are the advantages of π-section filter compared to other filters. Derive the expression for ripple factor r in a π-section filter. 7M
20. a) Sketch and explain the output characteristics of CB configuration. What are the consequences of early effect. 8M
b) Sketch common emitter npn transistor configuration. Define $I_{\text {ceo, }} I_{\text {cbo }}$ and show how are they related 6M
21. a) Derive the relation for stability factor S in a voltage divider bias current. 7M
b) Explain the concept of thermal runaway and derive the condition to prevent thermal runaway. 7M
22. a) Compare depletion type and enhancement type of MOSFETS. List the advantages, disadvantages and applications of MOSFET. 7M
b) What is the need for biasing in JFET? Explain and analyze the operating of a Self bias circuit. 7M
23. a) Derive all the h -parameters for a CE configuration 8M
b) Derive voltage gain and output resistance of common source JFET configuration 6M
24. a) Explain the characteristics of a Tunnel diode. Draw the equivalent circuit of it and list the applications of tunnel diode 8M
b) Explain any three applications of SCR with neat circuit diagrams. 6M
\square

B.Tech. I Year Supplementary Examinations May/June 2018

Engineering Physics

(Common to All Branches)

Max. Marks: 70

Time: 3 Hours

Answer any five questions

All Questions carry equal marks (14 Marks each)

1. a) Discuss various methods by which polarized light can be produced. 6M
b) What are Quarter and Half wave plates? Explain 5M
c) Calculate the thickness of half wave plate of Quartz for a wavelength 500 nm . Here $e=1.553$ and $o=1.544$. 3M
2. a) Derive the expression for Interplanar Spacing in terms of Miller Indices and lattice constant. 6M
b) Explain Bragg's law of X-ray diffraction. 5M
c) The Bragg's angle for reflection from (111) plane in a FCC crystal 19.2° for an X-ray of wave length $1.54 \AA$. Compute the cube edge of the unit cell. 3M
3. a) Explain the De Broglie hypothesis of matter waves. 4M
b) Assuming the Schrodinger's time independent wave equation, discuss the behaviour of a particle in one-dimensional potential well of infinite height. 10M
4. a) Describe the Drift and Diffusion currents in a Semiconductor. 7M
b) Mention some applications of Hall effect. 3M
c) The R_{H} of a specimen is $3.66 \times 10^{-4} \mathrm{~m}^{3} \mathrm{c}^{-1}$. Its resistivity is 8.93×10^{-3} m. Find the mobility and charge carrier concentration 4M
5. a) Explain the classification of magnetic materials in detail with its properties. 10M
b) A magnetic material has a magnetization of $3300 \mathrm{~A} / \mathrm{m}$ and flux density of$0.0044 \mathrm{~Wb} / \mathrm{m}^{2}$. Calculate magnetizing force and relative permeability of thematerial.4M
6. a) Explain the characteristics of Lasers. 4M
b) With necessary theory and energy level diagram, explain the working of a $\mathrm{He}-$ Ne Laser. Write its applications 10M
7. a) Derive the expressions for Critical angle and Acceptance angle in an optical fiber? 5M
b) Describe the function of Multimode Step Index optical fiber along with its refractive index profile. 5M
c) Calculate the Fractional refractive index change and Numerical aperture of an optical fiber with refractive indices of core and cladding as 1.563 and 1.498 respectively. 4M
8. a) Why nanomaterials exhibit different properties? Explain 6M
b) How the physical and chemical properties of nano-particles vary with their size? Explain 5M
c) Mention the important applications of nanomaterials in medicine 3M
\square

Code: 1GC13

B.Tech. I Year Supplementary Examinations May/June 2018

Engineering Chemistry

(Common to All Branches)
Max. Marks: 70
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Describe conversion of hard water into soft water by ion exchange method
along with neat diagram.
b) An sample of water on analysis containing the following salts in $\mathrm{mg} / \mathrm{lt}, \mathrm{MgSO}_{4}$: 6.0, $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}: 2.0, \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}: 12.2, \mathrm{CaCl}_{2}: 8.0$. Calculate carbonate and noncarbonated hardness in ppm units.
2. Write the following in detail
(a) Conductometric titrations
(b) $\mathrm{H}_{2}-\mathrm{O}_{2}$ fuel cell
3. a) What is corrosion? Explain electrochemical corrosion in detail. 7M
b) Write the factors influencing corrosion reaction in detail 7M
4. a) What are plastics how they are classified? Write the difference between
Thermoplastics and thermosetting plastics.
b) Explain preparation properties and application of Silicone rubber. 6M
5. a) Define explosives? How they are classified? What are the precautions to be
taken during storage?
b) What are lubricants? Write the functions of lubricants 6 M
6. a) For one component system, the triple point is an invariant system? Discuss 7M
b) Discuss the number of phases, components and degree of freedom in the
two component (Lead-Silver) System.
7. a) Explain analysis of flue gas by Orsat's apparatus with neat diagram. 9 M
b) Define fuel? Write the characteristics of good fuel. 5 M
8. a) Explain setting and hardening of cement with suitable reactions? 7M
b) Define Refractories? How they are classified give suitable examples. 7M
