Page 1 of 2

14M

14M

14M

14M

14M

14M

14M

- All Questions carry equal marks (14 Marks each)
- 1. The foci of an ellipse are 90 mm apart and the minor axis is 65 mm long. Determine the length of the major axis and draw half the ellipse by concentriccircles method and the other half by oblong method.
- 2. Construct a hypocycloid, rolling circle 50 mm diameter and directing circle 175 mm diameter. Draw a tangent to it at a point 50 mm from the center of the directing circle.
- The ends of a line PQ are on the same projector. The end P is 30 mm below 3. the H.P. and 12 mm behind the V.P. The end Q is 55 mm above the H.P. and 45 mm in front of the V.P. Determine the true length and traces of PQ and its inclinations with the two planes.
- A thin circular plate of 70 mm diameter is resting on its circumference such that 4. its plane is inclined 60° to the H.P. and 30° to the V.P. Draw the projections of the plate.
- A square pyramid, base 38 mm side and axis 50 mm long, is freely suspended 5. from one of the corners of its base. Draw its projections, when the axis as a vertical place makes an angle of 45° with the V.P. When a pyramid is suspended freely from a corner of its base, the imaginary line joining that corner with the center of gravity of the pyramid will be vertical.
- A pentagonal pyramid, base 30 mm side and axis 65 mm long, has its base 6. horizontal and an edge of the base parallel to the V.P. A horizontal section plane cuts it at a distance of 25 mm above the base. Draw the isometric projection of retained part.
- 7. Draw isometric view of given orthographic views.

Engineering Drawing

(Common to EEE, ECE, CSE and IT)

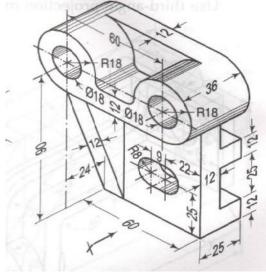
Answer any Five questions

B.Tech. I Year Supplementary Examinations May 2018

Max. Marks: 70

Code: 1G513

Hall Ticket Number :


35 9 (15) Ø10 10 2510 0 80

R-11 / R-13

Time: 3 Hours

8. Draw front view, top view and side view of given isometric view.

14M

Hall Tic	ket Number :	
Code: 1	IGC14 R-11 / R-13	3
	B.Tech. I Year Supplementary Examinations May 2018 Mathematics-I (Common to All Branches)	
Max. N	Marks: 70 Answer any five questions All Questions carry equal marks (14 Marks each) ********	irs
1. a)	Solve $(y^4 + 2y)dx + (xy^3 + 2y^4 - 4x)dy = 0$	7M
b)	The number N of bacteria in a culture grew at a rate Proportional to N. The value of N was initially 100 and increased to 332 in one hour. What would be the value of N after 1 $\frac{1}{2}$ hours?	7M
2. a)	Solve $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = e^{-2x} + e^{-3x}$	7M
b)	Solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$ by the Method of variation of Parameter	7M
3. a)	If x = r sin cosW, y = r sin sinW and z = r cos then find $\frac{\partial(x, y, z)}{\partial(r, w)}$	7M
b)	Find the minimum value of $x^2 + y^2 + z^2$, given that $ax + by + cz = P$	7M
4. a)	Trace the curve x ³ +y ³ =3axy	7M
b)	Find the surface area of solid generated by the revolution of an arc of the	
	catenary $y = c \cosh \frac{x}{c}$ about the <i>x</i> - axis.	7M
	By changing the order of integration to evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} dy dx$	7M
	Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y+z} dx . dy . dz$	7M
	Evaluate $L\left\{e^{t}\left(\cos 2t + \frac{\sinh 2t}{2}\right)\right\}$ ii) Find $L^{-1}\left\{\frac{s+3}{s^{2}-10s+29}\right\}$	7M
b)	Using convolution theorem find L ⁻¹ $\left\{ \frac{s}{(s^2 + 1)(s^2 + 4)} \right\}$	7M
7. a)	Find L{ $\int_{0}^{t} e^{t} \cos 2t dt$ }	4M
b)	Solve the differential equation $\frac{d^2x}{dt^2} - 4\frac{dx}{dt} - 12x = e^{3t}$ given that $x(0) = 1$ and	
	$x^{1}(0) = -2$ by using Laplace transform	10M
	If $\overline{F} = grad(x^3 + y^3 + z^3 - 3xyz)$ then find $div\overline{F}$ and $curl\overline{F}$	7M
b)	Evaluate $\int_{C} \left[\left(3x^2 - 8y^2 \right) dx + \left(4y - 6xy \right) dy \right]$ where C is the region bounded	
	by $x = 0$, $y = 0$ and $x + y = 1$ by Green's Theorem	7M
	*** Page 1	of 1

Hall Ti	cket Number :	
	R-11 / R-	13
Code:	B.Tech. I Year Supplementary Examinations May/June 2018]
	Engineering Physics	
	(Common to All Branches)	
Max.	Marks: 70 Time: 3 He	ours
	Answer any five questions	
	All Questions carry equal marks (14 Marks each)	
1. a)	Discuss various methods by which polarized light can be produced.	6M
b)	What are Quarter and Half wave plates? Explain	5M
c)	Calculate the thickness of half wave plate of Quartz for a wavelength 500nm.	
	Here μ_e = 1.553 and μ_o = 1.544.	ЗM
2. a)	Derive the expression for Interplanar Spacing in terms of Miller Indices and	CN 4
b)	lattice constant.	6M 5M
b) c)	Explain Bragg's law of X-ray diffraction. The Bragg's angle for reflection from (1 1 1) plane in a FCC crystal 19.2 ^o for	JIVI
0)	an X-ray of wave length 1.54Å. Compute the cube edge of the unit cell.	3M
3. a)	Explain the De Broglie hypothesis of matter waves.	4M
b)	Assuming the Schrodinger's time independent wave equation, discuss the	
	behaviour of a particle in one-dimensional potential well of infinite height.	10M
4. a)	Describe the Drift and Diffusion currents in a Semiconductor.	7M
b)	Mention some applications of Hall effect.	ЗM
c)	The R _H of a specimen is 3.66 10^{-4} m ³ c ⁻¹ . Its resistivity is 8.93 10^{-3} m. Find	45.4
E a)	the mobility and charge carrier concentration	4M
5. a) b)	Explain the classification of magnetic materials in detail with its properties. A magnetic material has a magnetization of 3300A/m and flux density of	10M
D)	0.0044 Wb/m^2 . Calculate magnetizing force and relative permeability of the	
	material.	4M
6. a)	Explain the characteristics of Lasers.	4M
b)	With necessary theory and energy level diagram, explain the working of a He-	
	Ne Laser. Write its applications	10M
7. a)	Derive the expressions for Critical angle and Acceptance angle in an optical fiber?	5M
b)	Describe the function of Multimode Step Index optical fiber along with its refractive index profile.	5M
c)	Calculate the Fractional refractive index change and Numerical aperture of an	0101
0)	optical fiber with refractive indices of core and cladding as 1.563 and 1.498	
	respectively.	4M
8. a)	Why nanomaterials exhibit different properties? Explain	6M
b)	How the physical and chemical properties of nano-particles vary with their	
^ \	size? Explain Montion the important applications of papameterials in modicine	5M 2M
c)	Mention the important applications of nanomaterials in medicine ***	ЗM

Hall Ticket Numb	er ·									
						<u> </u>			R-11 / R-1	3
Code: 1GC15	ch.IYe	ar Sup	nlam	ontar	v Eva	minc	ntions	May		
D.16		•		atica	,			Muy	2010	
				non to			-			
Max. Marks: 70		4.00				ationa			Time: 3 Hou	Jrs
	All Que	estions c	arry e	any fiv e qual r ******	narks			each)		
			[2	2 -1	1]					
1. a) Find the	rank of th	e matrix	A = -	-1 2	-1					
				1 –1	2					7M
b) Solve	the sys	stem -	$-2x_1 + 3$	$3x_2 - 4x$	$x_3 + x_4 =$	= -17;	$8x_1$	$-5x_{2} +$	$2x_3 - 4x_4 = 47$;	
$-5x_1 + 9x_2$	$x_2 - 13x_3 + 3$	$3x_4 = -44$	4 and	$-4x_1 + 3$	$3x_2 - 2x_2$	$x_3 + 2x$	$t_4 = -2$	5		7M
						1 2	0			
2. a) Using Ca	yley-Ham	nilton the	orem f	ind A ⁴	if $A = $	2 -1	0			
					L	-	_			7M
b) Reduce t		A (D.					12	-2		
D) Reduce t	he matrix	K A to Dia	agonal	form w	here A		2			
						[-]	1 –1	ΟJ		7M
3. a) Reduce	the Quar	dratic fo	rm 3r	$^{2} + 3v^{2}$	$+37^{2}+$	2xy +	2.7x - 2	2.vz to	the canonical	
form by (-		-		-		8M
-	•				-				nple for each	6M
				2						
				on x^3 –	2x-5	=0 u	sing t	he Bis	ection method	71/
b) Construc	three de t the table	•		for the	follow	ina de	ita			7M
.,		x	0	101 1	2	3	4			
		f(x)	1.0	1.5	2.2	3.1	4.6			

Evaluate $\Delta^3 f(2)$

5. a) By the method of least squares, find the straight line that best fits the following data

x	1	2	3	4	5
у	14	27	40	55	68

b) Fit the curve of the form $y = ae^{bx}$ to the following data by the method of least squares.

У	2.4	3.4	7.0	11.1	19.6
х	77	100	185	239	285

7M

7M

6. a) Given that

х	1.0	1.1	1.2	1.3	1.4	1.5	1.6	
							10.031	
Find	1	$d \frac{d^2 y}{dx^2}$	at (a) x	= 1.1 (k	o) x = 1.	6		7M

- b) Evaluate $\int_{0} \frac{dx}{1+x}$ by using (i) Trapezoidal rule (ii) Simpson's 1/3 rule (iii) Simpson's 3/8 rule 7M
- 7. a) Find by Taylor's series method the value of y at x = 0.1 and x = 0.2 to five places of decimals from $\frac{dy}{dx} = x^2 - 1$, y(0) = 1 7M

b) Using Runge-Kutta fourth order method, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y(0) = 1 at x = 0.2and x = 0.4 7M

- 8. a) Express f(x) = x f as a Fourier series in the interval (-f, f) 7M
 - b) Find the Half range sine and cosine series for the function f(x) = x in the range $0 \le x \le f$ 7M

Hall Tic	ket Number :												
Code :	1G111							<u> </u>				R-11/I	R-13
	B.Tech.	l Year	Supp	lem	entary	/ Exai	mino	atior	ns M	ay 2	018		
	P	rogran		-	C an non to			struc	ture	ès			
Max	. Marks: 70		(\	20111	101110	CJL 0	(11)			Т	ime:	03 Hour	S
	All	Questio			ny five qual r	narks			s ea	ch)			
1. a)	Define the flow	v chart?	Draw	and e	explain	differe	ent sy	mbol	s use	ed flo	wcha	art?	8M
b)	Write an algor	ithm to p	erforn	n the	greate	st of th	ree r	numb	ers.				6M
2. a)	Explain briefly	the strue	cture o	of 'c'?	? Write	a prog	ram	to cal	culat	e sin	nple i	nterest.	7M
b)	Write a progra	m to che	ck tha	at the	entere	d year	is a	leap	year	or no	ot.		7M
3. a)	Explain one-di	mensior	al arra	ay wit	thin an	exam	ole?						7M
b)	Write a progra	im to find	l sum	of n r	number	s usin	g arr	ays.					7M
4. a)	Explain in deta	ail about	pointe	ers.									8M
b)	Write a progra		•		elemen	ts and	their	addr	ess เ	using	poin	ters?	6M
5. a)	Explain about	structure	es with	n an e	example	Ð.							6M
b)	Explain the op	eration o	of seq	uentia	al acces	ss File	with	an e	xamp	ole?			8M
6. a)	Explain stack	operatio	าร (Pu	ısh ar	nd Pop)) with a	an ex	ampl	e?				7M
b)	Explain the op												7M
7. a)	Explain bread	th first se	earch	(BFS)) algori	thms v	vith a	n exa	ample	Э.			7M
b)	Explain Tree 1			. ,					•				7M
8. a)	Write and exp time complexit		•			itable	exarr	nple a	and d	liscus	ss the	e various	7M
b)	Explain the alo	gorithm f	or buk	ble s	ort and	give a	a suit	able	exam	ple.			7M

Hall	Tic	ket Number :	
Cod	e. 1	GC13 R-11 / R-	13
000	•••	B.Tech. I Year Supplementary Examinations May/June 2018	
		Engineering Chemistry	
Ma	~ \/	(Common to All Branches) Narks: 70 Time: 3 Ho	
MU	X. IV	Answer any five questions	2013
		All Questions carry equal marks (14 Marks each)	
1.	a)	Describe conversion of hard water into soft water by ion exchange method along with neat diagram.	7M
	b)	An sample of water on analysis containing the following salts in mg/lt, MgSO ₄	
		: 6.0, $Mg(HCO_3)_2$: 2.0, $Ca(HCO_3)_2$: 12.2, $CaCI_2$: 8.0. Calculate carbonate and noncarbonated hardness in ppm units.	7M
2.		Write the following in detail	
		(a) Conductometric titrations (b) $H_2 - O_2$ fuel cell	14M
3.	a)	What is corrosion? Explain electrochemical corrosion in detail.	7M
	b)	Write the factors influencing corrosion reaction in detail	7M
4.	a)	What are plastics how they are classified? Write the difference between	
	,	Thermoplastics and thermosetting plastics.	8M
	b)	Explain preparation properties and application of Silicone rubber.	6M
5.	a)	Define explosives? How they are classified? What are the precautions to be	
	b)	taken during storage?	8M GM
	b)	What are lubricants? Write the functions of lubricants	6M
6.	a)	For one component system, the triple point is an invariant system? Discuss	7M
	b)	Discuss the number of phases, components and degree of freedom in the	714
		two component (Lead - Silver) System.	7M
7.	a)	Explain analysis of flue gas by Orsat's apparatus with neat diagram.	9M
	b)	Define fuel? Write the characteristics of good fuel.	5M
8.	a)	Explain setting and hardening of cement with suitable reactions?	7M
	b)	Define Refractories? How they are classified give suitable examples.	7M
