Code: 1GC12

B.Tech. I Year Supplementary Examinations December 2015
 Engineering Physics
 (Common to All Branches)

Max. Marks: 70
Time: 03 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Distinguish between interference and diffraction of light. 3 M
b) Describe the formation of circular and elliptical polarized light with necessary theory. 8 M
c) Explain the formation of spectrum by grating. 3 M
2. a) What is space lattice, unit cell and lattice parameters 3M
b) Describe the basic crystal systems. 7M
c) The Bragg's angle for reflection from (111) plane in BCC crystal is 30° for an X -
ray of wavelength $1.5 \mathrm{~A}^{\circ}$. Find the cube edge of the unit cell 4 M
3. a) State and explain de-Broglie's hypothesis of matter waves. 3 M
b) Derive Schrodinger's one dimensional time independent wave equation for a free particle.
c) Explain various sources of electrical resistance in the case of metals. 4 M
4. a) Define law of mass action. 2 M
b) Describe Hall Effect in a semiconductor with necessary expressions. 7M
c) Explain the construction and working principle of Photo diode. 5M
5. a) What is hysteresis? 2 M
b) Derive Clausius-Mosotti relation for a polarized dielectric. 8M
c) A magnetic material has a magnetization of $3300 \mathrm{Am}^{-1}$ and flux density of 0.0044
Wbm^{-2}. Calculate the magnetizing force and the relative Permeability of the
material.
6. a) Explain the role of population inversion in laser emission. 4 M
b) Explain Messiner effect in superconductor. 4M
c) Derive the relation between the various Einstein's Coefficients of absorption and
emission of radiations. 6 M
7. a) Explain the basic principle of an optical fiber. 4 M
b) What is the acceptance angle of an optical fiber and derive an expression for it. 7M
c) Mention the applications of holography. 3M
8. a) Describe the basic principles of nanomaterials causing the change in its
properties.
b) Describe Chemical Vapour Deposition method of synthesis of nanomaterials. 6M
c) Mention the application of nanomaterials. 4M

Code: 1GC13

B.Tech. I Year Supplementary Examinations December 2015
 Engineering Chemistry
 (Common to All Branches)

Max. Marks: 70
Time: 03 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Explain boiler troubles in detail and how to prevent boiler corrosion.
b) A water sample has $50 \mathrm{mg} / \mathrm{L} \mathrm{Ca}^{+2}, 150 \mathrm{mg} / \mathrm{L} \mathrm{Mg}^{+2}, 50 \mathrm{mg} / \mathrm{L} \mathrm{Na}^{+}, 20 \mathrm{mg} / \mathrm{L} \mathrm{Cl}^{-}$and
$100 \mathrm{mg} / \mathrm{L}$ glucose. Calculate its total hardness, carbonate and non-carbonate
hardness?
c) What is dissolved oxygen why is it important? 3 M
2. a) Explain the following conductormetric titration curves.
i) Strong acid with strong base ii) weak acid with strong base 6M
b) Write the properties and characteristics of insulating materials. 4M
c) Using standard reduction potential, predict and justify which of the following metals react with a solution of $\mathrm{Sn}(\mathrm{II})$ ion: zinc, iron, copper and sodium.
$\mathrm{Zn}^{+2} / \mathrm{Zn}=-0.76 \mathrm{~V}, \mathrm{Fe}^{+2} / \mathrm{Fe}=-0.44 \mathrm{~V}, \mathrm{Cu}^{+2} / \mathrm{Cu}=0.34 \mathrm{~V}, \mathrm{Na}+\mathrm{Na}=-2.71 \mathrm{~V}$ and $\mathrm{Sn}^{+2} / \mathrm{Sn}=-0.13$
3. a) The nature of the metal oxide effects the corrosion of the metal justify! 5 M
b) How can you prevent the corrosion of the metal by using cathodic protection
principle?
c) Explain the role of inhibitors in preventing the corrosion. 4M
4. a) Explain the following.
i) Thermosetting resins ii) Thermoplastics resins 6M
b) Write the preparation and uses of the following.
i) Bakelite
ii) Nylon 6,6
5M
c) Explain the following with examples.
i) Monomer ii) Polymer 3M
5. a) Define high explosives and low explosives? Write the properties of explosives. 6M
b) Explain the following terms.
i) Viscosity ii) cloud and pour point iii) neutralization number iv) aniline point 8 M

6 a) What are degrees of freedom? Explain any two component systems. 7M
b) Explain the terms involved in phase rule and write phase rule equation. 7M
7. a) Write any four characteristics of good fuel. 3 M
b) How can you determine calorific value of fuel by using bomb calorimeter? 6M
c) Explain Fisher-Tropsch method in detail for the synthesis of gasoline. 5 M
8. a) Explain setting and hardening of cement with their chemical reactions. 6M
b) How can you justify the quality of the cement? 4 M
c) Write the criteria for good refractories. 4 M

B.Tech. IYear Supplementary Examinations December 2015 Engineering Drawing

(Common to EEE, ECE, CSE \& IT)
Max. Marks: 70
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. The major axis of an ellipse is 150 mm long and the minor axis is 100 mm long. Draw the ellipse by 'Concentric Circles' method. Draw a tangent to the ellipse at a point on it 25 mm above the major axis.
2. A circle of 50 mm diameter rolls on the circumference of another circle of 175 mm diameter and outside it. Trace the locus of a point on the circumference of the rolling circle for one complete revolution. Name the curve. Draw a tangent and a normal to the curve at a point 125 mm from the center of the directing circle.
(3. A line $A B$ is in the first quadrant, its ends A and B are 20 mm and 60 mm in front of the V.P respectively. The distance-between the end projectors is 75 mm . The line is inclined at 30° to the H.P and its H.T is 10 mm above xy. Draw the projections of $A B$ and determine its true length and the V.T.
3. A circular plate of negligible thickness and 50 mm diameter appears as an ellipse in the front view, having its major axis 50 mm long and minor axis 30 mm long. Draw its top view when the major axis of the ellipse is horizontal.
4. A pentagonal pyramid, base 25 mm side and axis 50 mm long has one of its triangular faces in the V.P and edge of the base contained by that face makes an angle of 30° with the H.P. Draw its projections.
5. Draw the isometric projection of a sphere of 60 mm diameter resting centrally on the top of a square prism having side of the base as 30 mm and axis height as 50 mm .

14M
7. Draw the isometric view of the object, the orthographic views of which are shown in figure below. All dimensions are in mm .

8. Draw the following views of the block shown in figure below.
a) Front view
b) Top view
c) both side views

All dimensions are in mm .

CODE: 1 G513

EXAMINATION: EN I BTTECN SUPPIEM entaruy Examination Del 2015
SUBJECT TITLE: Engineering Drawing
BRANCH: (EEG, EC, SSE \&IT)

1. The major axis of an ellipse is 150 mm and the minot axis is 100 mm loner brow the ellipse by 'concentri circles' method. Draw atomgent to the elise at a point on it 125 mpo above tue major axis.

2. A circle of 50 mm diameter grodels on the circum ference of anoluel circle of 175 mm diametel 8 oursire it. Trace tue lecus of a point on the circumference of twe rolling circle thone complare glerolution. Name whe cuozve. Daw otorngeut $1 a$ rolmal to the cuove at a poiut 125 mm form the cenrel of the diveltins circle.
Aus \quad Generarins circde $=50 \mathrm{~mm}$, irecriver circle $=175 \mathrm{~mm}$.

$$
\text { circunterénce of the genertaring circde }=360 \times \frac{50}{175}=102.85
$$

3. Aline $A B$ is in the firpt quardront, is Ond β \& B are 20 mm and 60 mm in frons of the v.P. gespectiveur. The dinstame blus the ens mojelisit is 75 mm the live is Inclines at 30° fotur H.P \& OHS H.T is 10 mm aboue xy. Drow the projeciton of AB as dereamine is true vevest an freiv.T.
(ans
Thit Question is out of sybubres, The Traces are out of Syllubrest $R \| \& R 13$ Buher.

This questav is from truees.

5 A pentagonal pasramid, bags 25 mm side $\frac{1}{2}$ any 50 mpl long has one ot its triangle face in the $\mid r \cdot p$ a edese of the base contained blu fun t face makes an angel 30° with the HP. brew is projections.

A circular plate of negligible thickness and 50 mm diameter appears as an ellipse in the front view, having its major axis 50 mm long and minor axis 30 mm long. Draw its top view when the major axis of the ellipse is horizontal.

(i)
(ii)
(iii)
$[$ Tolan $=4+4+449=14]$

A pentagonal pyramid, base 25 mm side and axis 50 mm long has one of its triangular faces In the VP and edge of the base contained by that face makes an angle of 30° with the $H P$. Draw its projections.

If drown

$$
\begin{aligned}
& \text { (i) } \rightarrow 4 \mathrm{~m} \\
& \text { (ii) } \rightarrow 4 \mathrm{~m} \\
& \text { (iii) } \rightarrow 4 \mathrm{~m} \text { \& fo drawer diomium } \rightarrow 2 \mathrm{~m}
\end{aligned}
$$

Draw the isometric projection of a sphere of 60 mm diameter resting centrally on the top of a square prism having side of the base as 30 mim and axis height as 50 mm ．

（i）

（ii）
squat Prism $\rightarrow 6 \mathrm{~m}$
Spheol $\rightarrow 6 \mathrm{~m}$ FQdimusions
of which are
Total $[6+6+2=14 \mathrm{~m}]$ Draw the isometric view of the object，the orthographic views of which are shown in figure below．All dimensions are in mm ．

F^{2} dines
$\left.\begin{array}{l}\text {（ii）} \rightarrow 4 \mathrm{~m} \\ \text {（ii）} \rightarrow 4 m \\ \text {（iii）} \rightarrow 4 m \\ \text {（iv）For drains diviner TOP，Fronts，央 Sidecus } \\ \text { vieumin isometric view } 2 m\end{array}\right\}$

Draw the following views of the block shown in figure below.
a) Front view b) Top view (c) both side views All dimensions are in mm .

(i) \rightarrow Front VECW $\rightarrow 4 \mathrm{~m}$
(ii) \rightarrow TOP view $\rightarrow 4 \mathrm{~cm}$
(iN) \rightarrow side view $\rightarrow 4 \mathrm{~m}$.
F\& dimurum $2 m$
Total $[4+4+4+2=14 \mathrm{~m}]$

B. Tech. I Year Supplementary Examinations December 2015

Mathematics-I

(Common to All Branches)
Max. Marks: 70
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Solve $\frac{d z}{d x}+\left(\frac{z}{x}\right) \log z=\frac{z}{x}(\log z)^{2}$.
b) Find the orthogonal trajectories of the families of the curve $(x-c)^{2}+y^{2}=c^{2}$ where c is arbitrary constant.
2. a) Solve $\left(D^{2}+2\right) y=x^{2} e^{3 x}+e^{x} \cos 2 x$, where $D=\frac{d}{d x}$.
b) Solve Non-Homogeneous ODE by Method of variation of parameters

$$
\left(D^{2}+2 D+1\right) y=e^{-x} \log x, \text { where } D=\frac{d}{d x} .
$$

3. a) Determine whether the following functions are functionally dependent or not. If functionally dependent, find the functional relation between them:

$$
u=x^{2}+y^{2}+2 x y+2 x+2 y, \quad v=e^{x} e^{y}
$$

b) Find the maximum and minimum distances of the point $(3,4,12)$ from the sphere $x^{2}+y^{2}+z^{2}=4$.
4. a) Trace the curve $y^{2}(a-x)=x^{2}(a+x)$.
b) Find the entire length of the cardioids $r=a(1+\cos \theta)$. Also show that the upper half is bisected by $\theta=\frac{\pi}{3}$.
5. a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d x d y d z$.
b) Evaluate the integral by changing the order of integration

$$
\int_{0}^{a} \int_{y / a}^{\sqrt{x / a}}\left(x^{2}+y^{2}\right) d x d y
$$

6. a) (i) Find $L\left\{\frac{\cos a t-\cos b t}{t}\right\}$.
(ii) Find $L^{-1}\left\{\frac{1}{(s-2)(s+2)^{2}}\right\}$ Using Convolution theorem.
b) (i) Find the Laplace Transform of Unit step function.
(ii) State and prove second shifting property of Laplace Transform.
7. a) (i) Find the Laplace Transform of the first derivative of $f(t)$.
(ii) Find $L\left\{\int_{0}^{t} \int_{0}^{t} \int_{0}^{t} \cos a u d u d u d u\right\}$.
b) Use transform method to solve the differential equation
$\frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}+x=e^{t}$ with $x=2, \frac{d x}{d t}=-1$ at $t=0$.
8. a) Evaluate Curl of $\bar{V}=e^{x y z}(i+j+k)$ at the point $(1,2,3)$.
b) State Green's theorem and Verify Green's theorem for $\int_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$, Where C is bounded by $y=x$ and $y=x^{2}$.
B.Tech. I Year Supplementary Examinations December 2015

Mathematical Methods

(Common to CSE \& IT)
Time: 03 Hours
Max. Marks: 70
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Reduce the matrix $A=\left[\begin{array}{rrrr}1 & 0 & 2 & 1 \\ 0 & 1 & -2 & 1 \\ 1 & -1 & 4 & 0 \\ -2 & 2 & 8 & -1\end{array}\right]$ to normal form and hence find its rank.
b) Test for consistency the set of equations and hence solve them if they are consistent. $x+y+z=6, \quad x-y+2 z=5, \quad 3 x+y+z=8, \quad 2 x-2 y+3 z=7$
2. a) Determine the characteristic roots and the corresponding characteristic vectors of the matrix $A=\left[\begin{array}{rrr}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$
b) Find the characteristic equation of the matrix, $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ and hence compute A^{-1}. Also find the matrix represented by $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I$.
3. a) Reduce the quadratic form $7 x^{2}+6 y^{2}+5 z^{2}-4 x y-4 y z$ to the canonical form. 10 M
b) Show that $\mathrm{A}=\frac{1}{2}\left[\begin{array}{rr}1+i & -1+i \\ 1+i & 1-i\end{array}\right]$ is a unitary matrix.
4. a) Find by Newton's method, the real root of the equation $3 x=\cos x+1$ correct to four decimal places.
b) Using Lagrange's interpolation formula, find $y(10)$ from the following table.

x	5	6	9	11
y	12	13	14	16

5. a) By the method of least squares fit a parabola of the form $y=a+b x+c x^{2}$ for the following data.

x	2	4	6	8	10
y	3.07	12.85	31.47	57.38	91.29

b) Fit a least square power curve to the following data.

x	1	2	3	4	5
y	0.5	2	4.5	8	12.5

6. a) Find the first and second derivatives of the function tabulated below at the
point $x=1.00$.

x	1.00	1.05	1.10	1.15	1.20	1.25	1.30
y	1.0000	1.0247	1.0488	1.0723	1.0954	1.1180	1.1401

b) Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using Simpson's $3 / 8$ rule.
7. a) Obtain Picard's second approximate solution of the initial value problem $y^{\prime}=\frac{x^{2}}{y^{2}+1}, \quad y(0)=0$.
b) Apply Runge-Kutta fourth order method, to find an approximate value of y when $x=0.2$ given that $\frac{d y}{d x}=x+y$ and $y=1$ when $x=0$.
8. a) Find a Fourier series to represent $x-x^{2}$ from $x=-\pi$ to $x=\pi$. 7M
b) Obtain the half-range sine series for e^{x} in $0<x<1$. 7M
\square

Code: 1G111

R-11/R-13

B.Tech. I Year Supplementary Examinations December 2015 Programming in C and Data Structures

(Common to CSE \& IT)

Max. Marks: 70
Time: 03 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Define an algorithm. Write an algorithm to find the sum of all even numbers
between 1 and n.
b) Write a program to display the names of the days of a week.
2. a) What are the different types of control statements available in 'c'? Explain each
with examples.

b) Write a program to find values such as i) Addition ii) Subtraction
iii) Multiplication iv) Division v) Remainder Calculation vi) Larger for given
two integer values by using Switch() Statements.
3. a) What is an array? Write a ' C ' program to perform matrix multiplication? 7M
b) Write short notes on command line arguments with an example. 7M
4. a) Write a program to find number of words in a statement. 6M
b) Differentiate between Arrays of structures and structures containing arrays with suitable examples. 8M
5. a) Define Structure and write the general format for declaring and accessing structure? 8M
b) Write a factorial program using no return and no argument type. 6M
6. a) Write a program to convert a postfix expression to a fully parenthesized infix expression. 7M
b) Explain Circular Queue operations (Insert and Delete) with an example. 7M
7. a) Explain Depth first search (DFS) algorithms with an example. 7M
b) Explain single linked list vs circular linked list with an example 7M
8. a) Explain the Quick sort algorithm with the help of an example. 7M
b) Explain searching techniques with an example. 7M

