

Hall	Ticke	et Number :	
Code	e: 40	G113 R-14	
		B.Tech. I Year Supplementary Examinations May 2017	
		Programming in C and Introduction to Datastructures	
Max	. Mc	(Common to CE, EEE, ME and ECE) arks: 70 Time: 3 Hou	Jrs
		Il five units by choosing one question from each unit ($5 \times 14 = 70$ Marks	
		******** UNIT–I	
1	a)	Define	
	,	i) Algorithm.	
		ii) Flowchart	4M
	b)	Explain the structure of a C program with example	4M
	c)	Write a C program to find average of six subject marks.	6M
		OR	
2	a)	Explain in details about computing environments	7M
	b)	Write a C program to swap two integer numbers.	7M
2	c)	UNIT-II	714
3	a) b)	Explain in detail about switch statement.	7M 7M
	b)	Write a C program to generate multiplication table. OR	7 111
4	a)	How do you declare a one dimensional array? Write a C program to find sum	
-	u)	the sum of elements initialized in one dimensional array.	7M
	b)	Describe the purpose of break and continue statements in C	7M
		UNIT-III	
5	a)	Define Pointer. List the features of Pointers	7M
	b)	Explain in detail about call by value and call by reference.	7M
		OR	
6	a)	List the names of the functions supported in the header file "stdio.h" and specify the purpose of at least three functions.	8M
	b)	Explain about malloc() and calloc()	6M
		UNIT-IV	
7	a)	Write a program in C to search for an element using binary search technique	7M
	b)	Define Structures. Explain with an example how structure members are	
		initialized and accessed	7M
	,	OR	
8	a)	Explain merge sort with an examples	8M
	b)	Differentiate between structures and unions.	6M
9	a)	UNIT-V Write a program in C to evaluate postfix expression.	7M
0	b)	Define Stack. Explain the push and pop operation of Stack	7M
	~)	OR	
10	a)	When we will use circular queues instead of queues. Explain the insert and	
-	,	delete operation of circular queue	9M
	b)	What are the applications of queues?	5M

Hall Ticket Number :						
				<u> </u>	<u></u>	R-14

Code: 4G512

B.Tech. I Year Supplementary Examinations May 2017

Engineering Graphics

(Common to CE & ME)

Max. Marks: 70

Time: 3 Hours

14M

7M

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I	

1. A Cricket ball is thrown vertically up, it reaches a maximum height of 15 meters and falls on the ground at a distance of 30 meters from point of projection of the ball till it reaches the ground. Draw the path followed by the cricket ball and name the curve.

OR

- 2. a) Draw the projections of the following points on the same reference line, keeping the projectors 30mm apart
 - (i) A, 30 mm above HP and 30 mm infront of VP
 - (ii) B, 45 mm below HP and 30 mm behind VP
 - (iii) C, 40 mm above HP and in the VP
 - (iv) D, 40 mm infront of VP and in HP
 - b) Draw the projections of a line EF 40 mm long parallel to HP and inclined at 35° to VP. E is 20 mm above HP and 15 mm infront of VP. 7M

UNIT-II

A 100 mm long line PQ has its end P at 10 mm above H.P. and 70 mm in 3. front of the V.P. The line is inclined at 60° to the H.P. and 30° to the V.P. Draw its projections. 14M

OR

4. Draw the projections of a rhombus having diagonals 125mm and 50mm long, the smaller diagonal of which is parallel to both the principal planes while the other is inclined at 30° to HP. 14M

UNIT–III

- 5. a) Draw the projections of a pentagonal prism, base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the H. P., with the axis inclined at 45° to the V. P.
 - b) Draw the projections of a cylinder, base 25 mm radius and axis 70 mm long, resting on one of its generator on the H. P., with the axis inclined at 45° to the V. P.

OR

6. A pentagonal pyramid of base side 20mm and altitude 55mm rests on its base on HP with one base edge being perpendicular to VP. It is cut by plane inclined at 50° to base. The cutting plane meets the axis at 15mm above the base. Draw the front view, sectional top view and true shape of the section. 14M

7M

7M

UNIT–IV

7. A pentagonal pyramid of base edge 25 mm and height 50 mm rests on its base on the ground with one of its base edges being perpendicular to the VP. A Circular hole of diameter 30 mm is made in the pyramid whose axis is perpendicular to the VP and 20 mm above the base of the pyramid. The axis of the hole intersects the axis of the pyramid at right angles to it. Draw the development of the surface of the pyramid.

OR

8. A horizontal cylindrical pipe 40mm diameter is joined with a vertical cylindrical pipe of same diameter. The axes of the pipes are parallel to VP. Neglecting the pipe thickness draw the projections showing the curves of intersection, when their axes intersect each other at right angles.

UNIT-V

9. A hexagonal prism of base edge 30 mm and height 70mm long is resting on its rectangular face on the ground with its axis parallel to the VP. A square prism of 20 mm base edge and height 40 mm rests on its base on the top rectangular face of the hexagonal prism. The axis of the square prism intersects and bisects the axis of the hexagonal prism when produced. One of the base edges of the square prism is parallel to the VP. Draw an isometric projection of the set up.

14M

14M

14M

OR

10. Draw the front view, top view and side view of the object whose isometric view is shown in the Figure below (All dimensions are in mm).

14M

	Hall	Ticket Number :														
C	code	: 4GC13							<u></u>					R-14		
		B.Tech. I	Year S	Supple	eme	entc	ary E	xan	ninc	itior	ns M	ay 2	017			
				Engir		-			-							
	Max	. Marks: 70		(Con	nmo	n to	ali f	sranc	cnes)			Tim	ne: 3 Hc	ours	
		nswer all five units	s by cho	posing				fron	n ea	ch ur	nit (t	5 x 14			015	
						***** NIT-										
1	2)	What is meant by	hordna	oo of y				unit	•							7M
1.	a) b)	What is meant by What is meant by								ofw	ator?	Evola	in wit	h ovamn		7M
	D)	what is meant by o	Carbona	le anu	non-o		R	naru	11622	OI Wa	aler	схріа		nexamp	162.	7 101
2	a)	Write brief accou	nt on Pr	imina :	and f											7M
2	b)	0.5 g of CaCO ₃ w		•			•	dilute	nd to	1000) ml	50 m	loft	his solut	tion	7101
	0)	required 48 mL o														
		mL of EDTA solu									•		•	•		
		required 10 mL of	f EDTA	solutio			i	ne di	ere	nt kir	nds o	of harc	Iness	in ppm.		7M
_				_		NIT-										
3.		Define galvanic of the different elect		•			-				and	catho	ode is	s +ve. W	rite	14M
				actions		urat	OR	SIECU	oues	.						14101
4.	a)	Discuss the how	the nati	ure of t	he m	etali		nces	: the	rate	ofco	nrosic	'n			7M
т.	b)	Explain the rustin												on		7M
	0)		gerner		r	NIT–		01100			1001)	, 01 00				
5.		Write notes on														
		(a) Tacticity														
		(b) Vulcanization	of rubb	er.												14M
							OR									
6.		What are the poly	/mers?	Explai	n the	e app	licati	ons	of po	lyme	rs in	differ	ent fie	elds.		14M
					U	NIT-	IV									
7.	a)	Explain the different	ence be	tween	gros	s cal	orific	: valu	e an	d net	calc	orific v	alue.			7M
	b)	What is the different	ence be	etween	prox	imat	e ana	alysis	and	ultin	nate	analy	sis of	coal?		7M
							OR									
8.	a)	What are the maj	or cons	tituent	of LF	PG a	nd N	atura	l gas	?						7M
	b)	Why excess air is	s require	ed for c	omp	lete o	comb	oustic	on?							7M
					U	NIT–	V									
9.		Define refractorie						terist	ics	of g	ood	refrac	ctory?	9 Give	the	
		classification of re	etractori	ies with	n exa	mple										14M
40		Define Min in C	11	14 -1 -1	·····		OR					n				
10.		Define Viscosity?	HOW IS	it dete	rmin	ed by **		dwoc	od Vi	scom	leter'	(14M
						ጥጥ	•									

	На	I Ticket Number :											r		-
ı د	Cod	e: 4GC12							I					R-14	
,	sou	B.Tech. I Y	′ear Su	Igqi	eme	entc	iry E	xan	nina	tion	s M	ay 20	217		
				Eng	jine	erin	g P	hysi	CS						
		A A order 70	(Con	nmo	n to	all B	ranc	ches)			Tipo o		
		k. Marks: 70 Answer all five units	by cho	osing		que *****		from	n ead	ch ur	nit (5	5x14		e: 3 Hours Narks)	
					UN	IIT–I									
1.	a)	Write few applicatio	ons of la	sers											4M
	b)	Describe the newton	n's rings	s form	natior			ent.							10M
_						OF	२								
2	a)	Explain the characte													4M
	b)	Explain the construc	ction an	d wor	•	of op I IT–II		fibre	•						10M
3.	a)	What are Miller indic	es? Exp	lain tł	ne pro	ocedu	ure fo	or finc	ling N	/liller	indic	es. Gi	ve one	example	10M
	b)	Draw the planes (21	11), (100)) and	d and	d (22	0)								4M
						(OR								
4.	a)	What are properties	s of ultra	sonic	s?										4M
	b)	Describe any one m	nethod f	or the				ultras	onics	5.					10M
F	c)	State and evolution L	laiaanha			IT–II		inla							сM
5.	a) b)	State and explain H		-			-	-	ite w		nath				6M 8M
	b)	Define de-Broglie de	uai natu		ener		DR			avele	ngin				OIVI
6	a)	Give the salient feat	tures of	Kron	ia-Pe			۵I							10M
0.	b)	Discuss the origin o			-										4M
	,					IT–I\		-							
7.	a)	With symbol expla	ain the	cons	truct	ion a	and	work	ing	of P	hoto	diod	e. Dis	cuss its	
		characteristics.													10M
	b)	Explain the role of L	_ED & P	hoto	diode		•	al fibr	e cor	nmu	nicat	ion sy	stems		4M
							OR								
8.	a)	Describe different ty and its temperature	•••	-		mate	erials	s in te	erms	of th	neir s	pin di	pole a	lignment	10M
	b)	Define magnetic dip magnetic materials.		nent.	List	out v	ariou	IS SOL	urces	ofm	nagne	etic di	pole m	oment in	4M
					UN	IT–V	'								
9.	a)	What is Meissner ef	ffect?												4M
	b)	Explain about the flu	ux exclu	sion	princ	iple e	exhib	ited I	by the	e sup	perco	onduct	ors		10M
						(OR								
10.	a)	What are nanomate	erials? V	/hy d	o the	y exl	nibit	differ	ent p	rope	rties	?			8M
	b)	Explain the types of	f nanom	ateria	als ba	ased **		imen	siona	alities	6				6M

Hall Ticke	et Number :]	
Code: 4G	511									R-14	
	B.Tech. I	Year S	upplerr	nentary	Exai	mina	atio	ns M	ay 20	017	
		E	Ingine	ering M	echo	anic	:S				
			(Comr	non to C	CE & I	ME)					
Max. Ma	rks: 70									Time: 3 Hours	
Answe	er all five uni	is by cho	_	e questic ********	on troi *	m ec	ich l	unit (3	5 X 14	= 70 Marks)	
1. a) S	State and pr	ove Lami	s theoren	1							
ŕ		s of a so	uare AB	CD as sl	nown				•	espectively along the magnitude,	
			30 N D			20 N C					

- a) Explain various types of supports 2.
 - Determine the reactions of the following beam system b)

3. Determine the forces in each member of the following frame structure

14M

11M

ЗM

Determine the forces in each member of the following frame structure 4.

UNIT–III

- 5. a) What are the types of frictions? Explain
 - b) A block overlying a 10° wedge on a horizontal floor and leaning against a vertical wall and weighing 1500 N is to be raised by applying a horizontal force to the wedge. Assuming coefficient of friction between all the surfaces in contact to be 0.3, determine the minimum horizontal force to be applied to raise the block

- 6. a) Explain law of friction
 - b) A weight of 160 kN is to be raised by means of the wedges A and B as shown in figure. Find the value of force P for impending motion of block C upwards, if coefficient of friction is 0.25 for all surfaces. Weights of the block C and the wedges may be neglected.

- UNIT–IV
- 7. Determine the centroid of the following figure. All dimensions are in mm

8. Determine MI of the following section with respect to centroidal axis. All dimensions are in mm

14M

3M

11M

11M

14M

3M

7M

2M

9. a) The acceleration of a particle in rectilinear motion is defined by the relation a = 25 -4s² where 'a' is expressed in m/sec² and 's' is position coordinate in metres. The particle starts with no initial velocity at the position s = 0. Determine the velocity when s = 3metres the position where the velocity is again zero the position where the velocity is maximum.

b) The acceleration of a particle is defined by the relation, a = Kt - 4. Knowing that v = 4 m/s when t = 2 sec and v = 1 m/s when t = 1 sec, determine the constant 'K'. Write the equations of the motion when x = 0 at t = 3 sec 7M

OR

- 10. a) What is the advantage of work-energy theorem?
 - b) An automobile moving with a uniform velocity of 40 kmph is accelerated by increasing the traction force by 20%. If the resistance to motion is constant, find the distance traveled before it acquires 50 kmph. Use work-energy method.
 12M
