B.Tech. I Year Supplementary Examinations May 2017
 Mathematics-I

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Solve $(x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)$ u
b) Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=x+e^{x} \cos x$.

$\bar{O} \bar{R}$

2. a) A body Stigin: ally at $80^{{ }^{x+}}$ ols down to $60_{o}^{\prime \prime 2}$ in 20 minutes, the temperature of the air being $400^{\circ} \mathrm{c}$. What will be the temperature of the co ${ }^{c}$ indy after 40 minutes from the original?

UNIT-II
 $f(x)=(x-1)(x-2)(x-3)$ in $(0,4)$, and find the appropriate value of ' c '.

OR

b) Expand $\begin{gathered}\text { tine maxima a'urin's series upto the term containg } \\ \text { esinx by Macla } \\ x^{4} .\end{gathered}$ 7M

5. a) Trace the curve U 7M
 7M

ō \bar{R}

6. a) Evaluate $\int_{0}^{-c_{2}} \int_{0}^{x+} \int_{0}^{x+y} e^{x+y+z} d z d y d x$. 7M
b) E-valuate $\int_{0}^{\infty} \int_{\sqrt{\pi}}^{0} J_{-\left(x^{2}+y^{2}\right)} d x d y$ by changing to polar co-ordinates and hence show that $\int_{0}^{\epsilon_{0}} e^{-x^{2}} d x=\frac{-\sqrt{\pi}}{2}$.

UNIT-IV
7. a) If a peiod lic function of pe iod ' $2 a$ ' is defined $l_{\text {, }}$

8. a) Apply convolution theorem to evaluate $\mathrm{OR}_{\mathbf{F}}$

-apteme transmomm tme to SNIT-V
9. a) Find
 \qquad
 x and $y=x^{2}$. rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leqq z \leq c$.
 7M
B.Tech. I Year Supplementary Examinations May 2017

Programming in C and Introduction to Datastructures

(Common to CE, EEE, ME and ECE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1 a) Define
i) Algorithm.
ii) Flowchart 4M
b) Explain the structure of a C program with example 4 M
c) Write a C program to find average of six subject marks. 6M

OR
2 a) Explain in details about computing environments 7M
b) Write a C program to swap two integer numbers. 7M
$\begin{array}{ll} & \text { UNIT-II } \\ \text { a) Explain in detail about switch statement. } & 7 \mathrm{M}\end{array}$
b) Write a C program to generate multiplication table. 7M

OR
4 a) How do you declare a one dimensional array? Write a C program to find sum the sum of elements initialized in one dimensional array.
b) Describe the purpose of break and continue statements in C 7M

UNIT-III

5 a) Define Pointer. List the features of Pointers 7M
b) Explain in detail about call by value and call by reference. 7M

OR
6 a) List the names of the functions supported in the header file "stdio.h" and specify the purpose of at least three functions.

8M
b) Explain about malloc() and calloc() 6M

UNIT-IV
7 a) Write a program in C to search for an element using binary search technique
b) Define Structures. Explain with an example how structure members are
initialized and accessed OR

8 a) Explain merge sort with an examples 8M
b) Differentiate between structures and unions. 6M

UNIT-V

9 a) Write a program in C to evaluate postfix expression. 7M
b) Define Stack. Explain the push and pop operation of Stack 7M OR
10 a) When we will use circular queues instead of queues. Explain the insert and
delete operation of circular queue
b) What are the applications of queues? 5 M

Hall Ticket Number:										

Code: 4G512

R-14

B.Tech. I Year Supplementary Examinations May 2017

Engineering Graphics
(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. A Cricket ball is thrown vertically up, it reaches a maximum height of 15 meters and falls on the ground at a distance of 30 meters from point of projection of the ball till it reaches the ground. Draw the path followed by the cricket ball and name the curve.

OR

2. a) Draw the projections of the following points on the same reference line, keeping the projectors 30 mm apart
(i) $\mathrm{A}, 30 \mathrm{~mm}$ above HP and 30 mm infront of VP
(ii) $\mathrm{B}, 45 \mathrm{~mm}$ below HP and 30 mm behind VP
(iii) $\mathrm{C}, 40 \mathrm{~mm}$ above HP and in the VP
(iv) D, 40 mm infront of VP and in HP
b) Draw the projections of a line EF 40 mm long parallel to HP and inclined at 35° to VP. E is 20 mm above HP and 15 mm infront of VP.

UNIT-II

3. A 100 mm long line $P Q$ has its end P at 10 mm above H.P. and 70 mm in front of the V.P. The line is inclined at 60° to the H.P. and 30° to the V.P. Draw its projections.

OR

4. Draw the projections of a rhombus having diagonals 125 mm and 50 mm long, the smaller diagonal of which is parallel to both the principal planes while the other is inclined at 30° to HP.

UNIT-III

5. a) Draw the projections of a pentagonal prism, base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the H . P., with the axis inclined at 45° to the V. P.
b) Draw the projections of a cylinder, base 25 mm radius and axis 70 mm long, resting on one of its generator on the H. P., with the axis inclined at 45° to the V. P.

OR

6. A pentagonal pyramid of base side 20 mm and altitude 55 mm rests on its base on HP with one base edge being perpendicular to VP. It is cut by plane inclined at 50° to base. The cutting plane meets the axis at 15 mm above the base. Draw the front view, sectional top view and true shape of the section.

UNIT-IV

7. A pentagonal pyramid of base edge 25 mm and height 50 mm rests on its base on the ground with one of its base edges being perpendicular to the VP. A Circular hole of diameter 30 mm is made in the pyramid whose axis is perpendicular to the VP and 20 mm above the base of the pyramid. The axis of the hole intersects the axis of the pyramid at right angles to it. Draw the development of the surface of the pyramid.

OR

8. A horizontal cylindrical pipe 40 mm diameter is joined with a vertical cylindrical pipe of same diameter. The axes of the pipes are parallel to VP. Neglecting the pipe thickness draw the projections showing the curves of intersection, when their axes intersect each other at right angles.

UNIT-V

9. A hexagonal prism of base edge 30 mm and height 70 mm long is resting on its rectangular face on the ground with its axis parallel to the VP. A square prism of 20 mm base edge and height 40 mm rests on its base on the top rectangular face of the hexagonal prism. The axis of the square prism intersects and bisects the axis of the hexagonal prism when produced. One of the base edges of the square prism is parallel to the VP. Draw an isometric projection of the set up.

OR

10. Draw the front view, top view and side view of the object whose isometric view is shown in the Figure below (All dimensions are in mm).

Code: 4GC13

B.Tech. I Year Supplementary Examinations May 2017

Engineering Chemistry

(Common to all Branches)

Max. Marks: 70
 UNIT-I

Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

1. a) What is meant by hardness of water? Give its units
b) What is meant by carbonate and non-carbonate hardness of water? Explain with examples.

OR

2 a) Write brief account on Priming and foaming.
b) 0.5 g of CaCO_{3} was dissolved in dil. HCl and diluted to 1000 mL .50 mL of this solution required 48 mL of EDTA solution for titration. 50 mL of hard water sample required 15 mL of EDTA solution for titration. 50 mL of same water sample on boiling, filtering etc, required 10 mL of EDTA solution. Calculate the diff erent kinds of hardness in ppm.

UNIT-II

3. Define galvanic cell. Why the anode of galvanic cell is -ve and cathode is +ve. Write the different electrode reactions occur at the electrodes.

OR

4. a) Discuss the how the nature of the metal influences the rate of corrosion.
b) Explain the rusting of iron with the help of electrochemical theory of corrosion.

UNIT-III

5. Write notes on
(a) Tacticity
(b) Vulcanization of rubber.

OR

6. What are the polymers? Explain the applications of polymers in different fields.

UNIT-IV

7. a) Explain the difference between gross calorific value and net calorific value.
b) What is the difference between proximate analysis and ultimate analysis of coal?

OR

8. a) What are the major constituent of LPG and Natural gas?
b) Why excess air is required for complete combustion?

UNIT-V

9. Define refractories? What are the characteristics of good refractory? Give the classification of refractories with examples.

OR
10. Define Viscosity? How is it determined by Redwood Viscometer?
\square

Code: 4GC12

R-14

B.Tech. I Year Supplementary Examinations May 2017

Engineering Physics

(Common to all Branches)

Max. Marks: 70 Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I1. a) Write few applications of lasers4M
b) Describe the newton's rings formation experiment. 10M
OR2 a) Explain the characteristics of lasers.4M
b) Explain the construction and working of optical fibre 10M
UNIT-II
3. a) What are Miller indices? Explain the procedure for finding Miller indices. Give one example 10M
b) Draw the planes (211), (100) and and (220) 4M
OR
4. a) What are properties of ultrasonics? 4M
b) Describe any one method for the detection of ultrasonics. 10M
UNIT-III
5. a) State and explain Heisenberg uncertainty principle 6M
b) Define de-Broglie dual nature of energy and derive its wavelength 8M
OR
6. a) Give the salient features of Kronig-Penny model. 10M
b) Discuss the origin of formation of energy bands 4M
UNIT-IV
7. a) With symbol explain the construction and working of Photo diode. Discuss its characteristics. 10M
b) Explain the role of LED \& Photo diode in optical fibre communication systems. 4 M
OR
8. a) Describe different types of magnetic materials in terms of their spin dipole alignment and its temperature dependence. 10M
b) Define magnetic dipole moment. List out various sources of magnetic dipole moment in magnetic materials. 4M
UNIT-V
9. a) What is Meissner effect? 4M
b) Explain about the flux exclusion principle exhibited by the superconductors 10M
OR
10. a) What are nanomaterials? Why do they exhibit different properties? 8M
b) Explain the types of nanomaterials based on dimensionalities 6M

B.Tech. I Year Supplementary Examinations May 2017

Engineering Mechanics

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) State and prove Lamis theorem
b) Four forces of magnitudes $10 \mathrm{~N}, 20 \mathrm{~N}, 30 \mathrm{~N}$ and 40 N are acting respectively along the four sides of a square $A B C D$ as shown in Figure. Determine the magnitude, direction and position of the resultant force

OR
2. a) Explain various types of supports
b) Determine the reactions of the following beam system

UNIT-II

3. Determine the forces in each member of the following frame structure

OR
4. Determine the forces in each member of the following frame structure

UNIT-III

5. a) What are the types of frictions? Explain
b) A block overlying a 10° wedge on a horizontal floor and leaning against a vertical wall and weighing 1500 N is to be raised by applying a horizontal force to the wedge. Assuming coefficient of friction between all the surfaces in contact to be 0.3 , determine the minimum horizontal force to be applied to raise the block

OR
6. a) Explain law of friction
b) A weight of 160 kN is to be raised by means of the wedges A and B as shown in figure. Find the value of force P for impending motion of block C upwards, if coefficient of friction is 0.25 for all surfaces. Weights of the block C and the wedges may be neglected.

UNIT-IV
7. Determine the centroid of the following figure. All dimensions are in mm

OR
8. Determine Ml of the following section with respect to centroidal axis. All dimensions are in mm

UNIT-V

> 9. a) The acceleration of a particle in rectilinear motion is defined by the relation $\mathrm{a}=25-4 \mathrm{~s}^{2}$ where ' a ' is expressed in $\mathrm{m} / \mathrm{sec}^{2}$ and ' s ' is position coordinate in metres. The particle starts with no initial velocity at the position $\mathrm{s}=0$. Determine
> i. the velocity when $\mathrm{s}=3$ metres
> ii. the position where the velocity is again zero
> iii. the position where the velocity is maximum.
b) The acceleration of a particle is defined by the relation, $\mathrm{a}=\mathrm{Kt}-4$. Knowing that $v=4 \mathrm{~m} / \mathrm{s}$ when $\mathrm{t}=2 \mathrm{sec}$ and $\mathrm{v}=1 \mathrm{~m} / \mathrm{s}$ when $\mathrm{t}=1 \mathrm{sec}$, determine the constant ' K '. Write the equations of the motion when $x=0$ at $t=3 \mathrm{sec}$

OR
10. a) What is the advantage of work-energy theorem? 2M
b) An automobile moving with a uniform velocity of 40 kmph is accelerated by increasing the traction force by 20%. If the resistance to motion is constant, find the distance traveled before it acquires 50 kmph . Use work-energy method.

