Hall Tick	et Number :												Г			1
Code: 40	GC14	<u> </u>		I	1		1	I	L	I	L	Ĩ		R-	14	
	B.Tech.	l Yec	ar Su							atio	ns N	1ay 2	018	3		
			(thei on to				5)						
Max. M Answer	arks: 70 all five units	by c	-							-	uni	t(5x			3 Hours Aarks)	i
				C			***** UNI		7			·				
1. a)	Solve dy	у	_ S	in 2x				1-1								
	Solve $\frac{dy}{dx} + \frac{dy}{dx}$	$x \log x$	r 1	og x												7M
b)		he sy	/sten	n of	conf	ocal	and	coax	ial pa	arabo	olas	$y^2 = 4a$	a(x)	+a) is	s self	
	Orthogonal						0	R								7M
2. a)	Solve $(D^2 -$	+4D+	3)y	= sin	3xc	$\cos 2x$										7M
	Solve $(D^2 -$,					e me	thod	of va	riatio	on of P	arar	neter		7M
	() •					UNI									7 111
3. a)	Expand log((1+ e ^x	^s) is a	asce	nding	g pov	vers	of x								7M
b)	If $u = \frac{x+y}{1-xy}$, V =	= tan	$x^{-1} x +$	⊦ tan⁻	⁻¹ y t	hen f	ind -	$\partial(u,v)$ $\partial(x,y)$) v)						7M
4. a)	Examine th	e fun	ction	n for	extr	reme	O valu		f(x.	v = x	⁴ + \	1 ⁴ - 2 x	² +	4 x v–	2v²	7M
b)																7 101
	in ellipsoid	$\frac{x^2}{a^2}$	$+\frac{y^2}{b^2}$	$\frac{2}{2} + \frac{2}{6}$	$\frac{z^2}{z^2} =$	1										7M
5.	Trace the c	urve	9 a	y ² =	(x -	2a)	(x · O) 2							14M
	a í	$\sqrt{a^2 - y^2}$	<u> </u>					IX.								
6. a)	Evaluate \int_{0}^{a}	J	$\sqrt{a^2}$	-x ²	-y ²	dx.d	У									7M
b)	Evaluate	\int_{0}^{1}	\int_{0}^{1-x}	x d	z d x	dy										714
		0 y	0				UNIT	-IV								7M
7. a)	Find the La	place	Tra	nsfo	rms (of	i) si	n 2 <i>t</i> s	sin 3	t ii)	$L \left\{ e^{t} \right\}$	$\left(\cos 2t\right)$	$+\frac{\text{sir}}{\text{sir}}$	$\left(\frac{\ln 2t}{2}\right)$	>	7M
b)	Using convo	olutior	n the	eoren	n finc	d L ⁻¹	$\left\{\frac{1}{(s^2 + s^2)}\right\}$	s + 1) (s	$^{2} + 4$	$\overline{)}$						7M
o	Lloing Lonio	oo tro	nofe	orm o		?م)	0			iny #	÷/0	$) = \sqrt{1/7}$		0		
8.	Using Lapla	100 II 8	11510		oive		+ 20 UNI		y = S	II X II	y(U) = y (() =	0.		14M
9. a)	Find the di	rectio	nal	deriv	vative	e of	2xy	$+z^{2}$	at	(1, -	-1, 3) in th	ne c	direction	on of	7M
	$\overline{i} + 2\overline{j} + 3\overline{i}$	\overline{k} .														

b) Show that Curl grad f = 0 where f is a scalar point function 7M OR 10. Verify Green's theorem for $\int_C [(xy + y^2)dx + x^2dy]$ where C is bounded by y = x and y = x² ***

Hall ⁻	Ticke	et Number :	_
Code			
		.Tech. I Year Supplementary Examinations May/June 2018	_
	_	Engineering Chemistry	
		(Common to All Branches)	
	-	Time: 3 Hour all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
711200)
	、	UNIT-I	
1.	a)	Comment on hardness of water and mention any one of the method for estimation of hardness of water.	7M
	b)	What are boiler troubles? Write a note on disadvantages of boiler troubles.	7M
	2)	OR	
2.	a)	Explain the treatment of saline water by reverse osmosis in detail.	7M
	b)	Write any one of the methods for purification of lake water for domestic purpose	
		and comment on break point chlorine.	7M
3.	a)	What are fuel cells? Write the working procedure for H_2 - O_2 fuel cell	7M
	b)	Write a note on lead-acid batteries with chemical reactions involving.	7M
		OR	
4.	a)	Explain any two methods for prevention of corrosions.	7M
	b)	Explain the factors which effect the corrosion.	7M
5.	a)	UNIT-III Differentiate between thermoplastics and thermosetting plastics	7M
0.	b)	Write a brief notes on Vulcanization and compounding of rubber	7M
	2)	OR	,
6.	a)	What are conducting polymers? Explain the synthesis, mechanism and	
		applications of polyacetylene.	7M
	b)	Describe the preparation, properties and engineering applications of Buna-S and Buna-N rubbers	7M
			7 101
7.	a)	Explain the classification of fuels and write the characteristics for good fuel	7M
	b)	Explain Otto Hoffmann's by product oven process	7M
•	、	OR	
8.	a)	Explain the following i) Knocking ii) Octane number iii) Cetane number	7M
	b)	Compare the liquid fuels with gaseous fuels.	7M
	0)		7 101
9.	a)	What is Portland cement? Describe the manufacture of Portland cement by wet	
		method.	7M
	b)	What is setting and hardening of cement? Explain various reactions involved	714
		in setting and hardening of cement OR	7M
10.	a)	What are lubricants? Discuss any three properties of lubricants.	7M
	b)	What are refractories? Discuss any three properties of refractories.	7M

Hall Tick	et Number :
Code: 4	G511 R-14
	B.Tech. I Year Supplementary Examinations May 2018
	Engineering Mechanics
	(Common to CE & ME)
Max. Ma	
Answer c	all five units by choosing one question from each unit (5 x 14 = 70 Marks)
	UNIT–I
1. a)	What do you mean by co-polar concurrent forces? State the theorem of
b)	parallelogram of forces 7
D)	P and Q are two collinear forces. When they act in opposite directions, their resultant is 34N, when they act at right angles to each other their resultant is
	50N. Find P and Q.
	OR
2. a)	What is the physical significance of moment? Define couple 7
b)	A uniform beam 4.8m long and weighing 15kN rests on two supports. The
	maximum weight which can be hung at one end without upsetting the beam is
	25kN. Find the position of the support nearest to the weight 7
3. a)	What is a framed structure? What assumptions are made while determining
,	stresses in a framed structure?
b)	Determine the stress in each member of the truss loaded as shown below in
	figure.
	В
	30° 60° 30° C
	10 kN 7
	OR

- 4. a) What do you mean by perfect frame, deficient frame, redundant frame 7M
 - b) Determine the forces in each members of the plane truss loaded and supported as shown in figure.

		UNIT–III											
5.	a)	What do you mean by friction? What is limiting friction?	7M										
	b)	A body weighing 20kN resting on a rough horizontal plane can just be moved											
		by a horizontal force of 5kN. Determine the co-efficient of friction and the											
		total friction.	7M										
OR													
6.	a)	Prove that the angle of repose is equal to the angle of friction.	7M										
	b)	State the laws of friction.	7M										
		UNIT–IV											
7.	a)	Define centroid of area and centre of gravity or a body	7M										
	b)	Determine the C.G. of a uniform triangular lamina	7M										
		OR											
8.	a)	What do you mean by mass moment of inertia and moment of inertia of an area	7M										
	b)	Determine the least and greatest moment of inertia of an inverted T-section.											
		45cmX60cmX15cm.	7M										
		UNIT–V											
9.	a)	Define											
		(i) Speed, (ii) displacement, (iii) velocity, (iv) acceleration.											
		What is the difference between speed & velocity?	7M										
	b)	Establish with usual notations the formula $\frac{1}{S = ut + \frac{1}{2}Rt^2}$	7M										
		OR											
10.	a)	Define work, power and energy? Derive a formula for K.E. of a body.	7M										
	b)	When velocity of a body is 750m/sec, it possesses a kinetic energy of											
		2200kJ. How much kinetic energy it will lose when its velocity comes down to											
		500m/sec	7M										

Hall Tick	ket Number :	
Code: 4	R-14	
	B.Tech. I Year Supplementary Examinations May 2018	
	Engineering Graphics	
	(Common to CE & ME)	
Max. M	arks: 70 Time: 3 Hou all five units by choosing one question from each unit (5 x 14 = 70 Marks	-
7 (113 44 01 0)
	UNIT–I	
1. a)	Construct an ellipse when its major axis is 90mm and minor axis is 55mm by concentric circle method.	714
b)	A ball thrown from the ground level reaches a maximum height if 5 m and	7M
b)	travels a horizontal distance of 11 m from the point of projection. Trace the	
	path of the ball [Rectangle method]	7M
	OR	
2. a)	Draw the projections of the following points on a common reference line:	
	i. P, 25 mm below the HP and in the VP.	
	ii. Q, 40 mm behind the VP and in the HP	
	iii. R, 30 mm below the HP and 30 mm in front of the VP	
	iv. S, 25mm above the HP and 25 mm behind the VP	
	 v. T, 25 mm above the HP and 30 mm in front of the VP vi. U, in both the VP and HP 	
	vii. V, 35 mm below the HP and 30 mm behind the VP.	7M
b)	The end P of a line 60 mm long is 15 mm above the HP and 15 mm in front of	
- /	the VP. The line is parallel to the HP and inclined to the VP. The length of the	
	elevation is 40 mm. Draw the projections of the line and find the inclination of	
	the line with the VP.	7M
3. a)	UNIT–II A line PQ has its ends 10 mm and 45 mm above the HP and the length of its	
5. a)	front view is 70 mm. the line is inclined at 25° to the HP. The HT of the line is	
	15 mm in front of the VP. Draw the projections of the line and find its true	
	length and true inclinations with the VP. Also show its VT.	7M
b)		
	45° to the VP. Its centre is 40 mm above the HP and 30 mm in front of the VP.	714
	Draw its top and front views and also its traces. OR	7M
4. a)	The mid-point of a straight line AB is 60 mm above the HP and 50 mm in front	
ч. а)	of the VP. The line measures 80 mm long and inclined at 30° to HP and 45° to	
	VP. Draw its projections.	7M
b)	A hexagonal plate of side 35 mm rests on the HP on one of its sides	
	perpendicular to the VP. Draw its projections when its surface is inclined at	 .
	50° to the HP. Also show its traces.	7M

UNIT-III

5. Draw the projections of a cone, base 30 mm diameter and axis 50 mm long, resting on HP on a point of its base circle with the axis making an angle of 45° with HP and its top view making an angle of 30°.

OR

6. A sphere of 60 mm diameter rests on HP. It is cut by a section plane perpendicular to VP and inclined at 60° to HP. The section plane passing through a point on the surface of the sphere at a distance of 20 mm from its bottom and on the left side. Draw the sectional top view and true shape of the section.

UNIT-IV

7. A right circular cone of base 60 mm diameter and 60 mm height stands vertically with its base on HP. A semi-circular hole of 36 mm diameter is cut through the cone such that the axis of the hole is parallel to HP, perpendicular to VP and intersecting the axis of the cone 20 mm above the base. The flat surface of the hole is parallel to HP and perpendicular to VP. Draw the development of the lateral surface of the cone with the hole. 14M

OR

8. A cone of base 60 mm diameter and axis 70 mm long, rests with its base on HP. It is completely penetrated by a horizontal cylinder of 30 mm diameter such that both the axes intersect each other at right angles. The axis of the cylinder is parallel to VP and 20 mm above the base of the cone. Draw the Projections of the solids showing the curves of intersection.

UNIT-V

OR

9. The frustum of a cone has its top and bottom diameters 35 mm and 50 mm respectively and altitude 53 mm. It rests in the top face of the frustum of a square pyramid. The sides of the top and bottom faces of the pyramid are 58 mm and 70 mm respectively. The height is 22 mm. Draw the isometric view.

10. Draw the front view, Top view and Side view of the object shown in figure below.

14M

14M

14M

14M

Hall ⁻	Ticke	et Number :																
Code	e: 40	GC12							r	J		1					R-14	
	E	3.Tech. I Ye	ear S	Supp	olen	nen	tary	Exc	amir	natio	ons	Ma	y/	Jun	e2	2018	3	
					Eng	gine	eeri	ng F	hys	sics								
		. 70		(Con	nmc	n to	All E	Bran	ches	5)				-	•	.	
		arks: 70 II five units b	by ch	າວວຣ	ing o	one	-	stior ****	n fror	n ec	ach	unit	(5 x 1		-	: 3 Ha Mark	
								UNI	T–I									
1.	a)	Derive the e	expre	ssio	n of v	wave	e leng			noch	roma	atic li	igh	nt usi	ing	New	/ton's	
		rings setup?	?															11M
	b)	A parallel b			-			-							-		-	
		(µ=1.5) suc																014
		smallest thic	cknes	SS OF	the p	nate	whic	n wii OF		ke it a	appe	arda	arr	(Dy I	rene	ectio	n.	3M
2.	a)	With the he	elp of	f suit	table	diag	gram	-		the	cons	truct	ior	n an	d w	/orki	ng of	
	,	Ruby laser.	•				•	•									U	10M
	b)	Mention the	appl	icatio	ons o	f las	ers ir	n diff	erent	field	s							4M
								UNI										
3.		Derive the		-							CC.	Sh	٥W	v tha	t F	CC i	s the	4 4 5 4
		most closely	y pac	кеа	of thr	ee c	UDIC	struc OF		5								14M
4.	a)	Explain the	wor	king	and	cons	struc	-		ezoe	lectr	ic m	et	hod	of	ultra	sonic	
	,	wave produ		-					•									10M
	b)	Explain the	differ	ent o	detec	tion	meth	ods	of Ult	traso	nic v	vave	s.					4M
							L	UNI]								
5.	a)			-		-			•			are o	qua	antiz	ed.			10M
	b)	Explain the	Phys	ical	signif	ican	ce of			ctior).							4M
6.	a)	What are th	10 52	alient	feat	ures	of	OF izzel·		ree d	alect	ron f	the	٥rv	νм	entic	n its	
0.	u)	merits and c			icat	uico	01 0	1000			51000			JOI y I	111	Critic		7M
	b)	On the basis	s of b	band	theo	ry, e	xplai	n ho	w the	e soli	ds a	re cla	as	sified	d int	to m	etals,	
	,	semiconduc	tors	and i	insula	ators												7M
			_			_	L	UNIT										
7.	a)	Distinguish										ctors						4M
	b)	Explain the					•											6M
	c)	Explain the	direc	t and	d indi	rect	band	• •		icon	ducto	or						4M
8.	a)	Explain Hys	teres	sis Ci	urve			OF	ί.									7M
0.	b)	Distinguish				ind h	ard r	naar	netic	mate	rials							7M
	-,				0			UNI		7								
9.	a)	What is a su	uperc	ondu	uctor	? Wr	ite th			prop	pertie	es of	รเ	uperc	cond	ducto	ors	6M
	b)	Explain the	BCS	theo	ory of	Sup	erco	nduc	tivity	in de	etail.							8M
			-					OF	-	_						-		
10.	a)	Describe the					•							•	•			6M
	b)	Write the opt	ical, t	herm	al, me	echai			nagne	etic p	roper	ties o	ot f	Nano	mat	erial	s.	8M
							不	* *										

Hall	Tick	et Number :	
		R-14	
Code	e: 4G	B.Tech. I Year Supplementary Examinations May 2018	
		Programming in C & Introudution to Datastructures	
		(Common to CE, EEE, ME & ECE)	
-		arks: 70 Time: 3 Ho er all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********	Urs
4		UNIT-I	01/
1.	a) b)	Explain the importance of computer system? Write an algorithm and flowchart on simple interest	8M 6M
	D)	OR	OIV
2.	a)	Explain the structure of C programming with simple example	4N
	b)	Write a program on calculating area and perimeter of square and rectangle.	10N
3.	a)	Define an Array? Write a c program on display 10 numbers using an array	7N
	b)	Write a C program to check whether the given number is Divisible by 3 or not OR	7N
4.	a)	Write a C program to find whether the given Character is alphabet, Digit or	
	u)	any other	7N
	b)	Write a C program to perform multiplication of two matrices	7N
5.		UNIT–III Define a recursive function? Write a C program to find the factorial of a given	
		integer using recursive function	14N
		OR	
6.		How to create dynamic memory allocation with suitable example	14N
		UNIT-IV	
7.	a)	Write a C program to write data to text file and read it	7N
	b)	Write a c program on Quick sort?	7N
		OR	
8.	a)	What are the string manipulation functions? Write a c program to find length	
	L)	of the given string	7N
	b)	Write a c program on Binary Search	7N
		UNIT-V	
9.		Write a C Program to implement Queue using arrays	14N
		OR	
10.		Write a C program to convert infix expression to postfix expression	14N