B.Tech. I Year Supplementary Examinations May 2018

## Mathematics-I

( Common to All Branches )
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. a) Solve $\frac{d y}{d x}+\frac{y}{x \log x}=\frac{\sin 2 x}{\log x}$
b) Prove that the system of confocal and coaxial parabolas $y^{2}=4 a(x+a)$ is self Orthogonal
2. a) Solve $\left(D^{2}-4 D+3\right) y=\sin 3 x \cos 2 x$
b) Solve $\left(D^{2}+1\right) y=\operatorname{cosec} x \cot x$ by the method of variation of Parameter

## UNIT-II

3. a) Expand $\log \left(1+e^{x}\right)$ is ascending powers of $x$
b) If $u=\frac{x+y}{1-x y}, V=\tan ^{-1} x+\tan ^{-1} y$ then find $\frac{\partial(u, v)}{\partial(x, y)}$
4. a) Examine the function for extreme values $\mathrm{f}(x, \mathrm{y})=x^{4}+\mathrm{y}^{4}-2 x^{2}+4 x \mathrm{y}-2 \mathrm{y}^{2} \quad 7 \mathrm{M}$
b) Find the volume of the largest rectangular parallelepiped that can be inscribed
in ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

## UNIT-III

5. Trace the curve $9 \mathrm{a}^{2}=(x-2 \mathrm{a})(x-5 \mathrm{a})^{2}$
6. a) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} \sqrt{a^{2}-x^{2}-y^{2}} d x . d y$
b) Evaluate $\int_{0}^{1} \int_{y}^{1} \int_{0}^{1-x} x \mathrm{dz} \mathrm{d} x \mathrm{dy}$
7. a) Find the Laplace Transforms of
i) $\sin 2 t \sin 3 t$
ii) $L\left\{\mathrm{e}^{\mathrm{t}}\left(\cos 2 \mathrm{t}+\frac{\sinh 2 \mathrm{t}}{2}\right)\right\}$
b) Using convolution theorem find $L^{-1}\left\{\frac{\mathrm{~s}}{\left(\mathrm{~s}^{2}+1\right)\left(\mathrm{s}^{2}+4\right)}\right\}$

## OR

8. Using Laplace transform solve $\left(D^{2}+2 D-3\right) y=\sin x$ if $y(0)=y^{1}(0)=0$.

## UNIT-V

9. a) Find the directional derivative of $2 x y+z^{2}$ at $(1,-1,3)$ in the direction of $\bar{i}+2 \bar{j}+3 \bar{k}$.
b) Show that Curl grad $f=0$ where $f$ is a scalar point function
10. Verify Green's theorem for $\int_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$ where C is bounded by $\mathrm{y}=\mathrm{x}$ and $y=x^{2}$ 14M

# B.Tech. I Year Supplementary Examinations May/June 2018 

# Engineering Chemistry 

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ( $5 \times 14=70$ Marks )
********

## UNIT-I

1. a) Comment on hardness of water and mention any one of the method for estimation of hardness of water.
b) What are boiler troubles? Write a note on disadvantages of boiler troubles.

## OR

2. a) Explain the treatment of saline water by reverse osmosis in detail.
b) Write any one of the methods for purification of lake water for domestic purpose and comment on break point chlorine.

## UNIT-II

3. a) What are fuel cells? Write the working procedure for $\mathrm{H}_{2}-\mathrm{O}_{2}$ fuel cell 7 M
b) Write a note on lead-acid batteries with chemical reactions involving. 7M

OR
4. a) Explain any two methods for prevention of corrosions.
b) Explain the factors which effect the corrosion.

## UNIT-III

5. a) Differentiate between thermoplastics and thermosetting plastics
b) Write a brief notes on Vulcanization and compounding of rubber

## OR

6. a) What are conducting polymers? Explain the synthesis, mechanism and
applications of polyacetylene.
b) Describe the preparation, properties and engineering applications of Buna-S and Buna- N rubbers

## UNIT-IV

7. a) Explain the classification of fuels and write the characteristics for good fuel 7 M
b) Explain Otto Hoffmann's by product oven process
8. a) Explain the following
i) Knocking
ii) Octane number
iii) Cetane number
b) Compare the liquid fuels with gaseous fuels.

## UNIT-V

9. a) What is Portland cement? Describe the manufacture of Portland cement by wet method.
7M
b) What is setting and hardening of cement? Explain various reactions involved
in setting and hardening of cement

OR
10. a) What are lubricants? Discuss any three properties of lubricants. 7 M
b) What are refractories? Discuss any three properties of refractories. 7M
B.Tech. I Year Supplementary Examinations May 2018

## Engineering Mechanics

( Common to CE \& ME )
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. a) What do you mean by co-polar concurrent forces? State the theorem of parallelogram of forces
b) P and Q are two collinear forces. When they act in opposite directions, their resultant is 34 N , when they act at right angles to each other their resultant is 50N. Find P and Q .

## OR

2. a) What is the physical significance of moment? Define couple
b) A uniform beam 4.8 m long and weighing 15 kN rests on two supports. The maximum weight which can be hung at one end without upsetting the beam is 25 kN . Find the position of the support nearest to the weight

## UNIT-II

3. a) What is a framed structure? What assumptions are made while determining stresses in a framed structure?
b) Determine the stress in each member of the truss loaded as shown below in figure.


10 kN
OR
4. a) What do you mean by perfect frame, deficient frame, redundant frame
b) Determine the forces in each members of the plane truss loaded and supported as shown in figure.

UNIT-III
5. a) What do you mean by friction? What is limiting friction? ..... 7M
b) A body weighing 20 kN resting on a rough horizontal plane can just be movedby a horizontal force of 5 kN . Determine the co-efficient of friction and thetotal friction.7M
OR
6. a) Prove that the angle of repose is equal to the angle of friction. ..... 7M
b) State the laws of friction. ..... 7M
UNIT-IV
7. a) Define centroid of area and centre of gravity or a body ..... 7M
b) Determine the C.G. of a uniform triangular lamina ..... 7M
OR
8. a) What do you mean by mass moment of inertia and moment of inertia of an area ..... 7M
b) Determine the least and greatest moment of inertia of an inverted T-section. $45 \mathrm{~cm} \times 60 \mathrm{cmX} 15 \mathrm{~cm}$. ..... 7M
UNIT-V
9. a) Define
(i) Speed, (ii) displacement, (iii) velocity, (iv) acceleration. What is the difference between speed \& velocity? ..... 7M
 ..... 7M
OR
10. a) Define work, power and energy? Derive a formula for K.E. of a body. ..... 7M
b) When velocity of a body is $750 \mathrm{~m} / \mathrm{sec}$, it possesses a kinetic energy of 2200kJ. How much kinetic energy it will lose when its velocity comes down to $500 \mathrm{~m} / \mathrm{sec}$ ..... 7M

## Hall Ticket Number :

$\square$

# B.Tech. I Year Supplementary Examinations May 2018 Engineering Graphics 

( Common to CE \& ME )
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. a) Construct an ellipse when its major axis is 90 mm and minor axis is 55 mm by concentric circle method.
b) A ball thrown from the ground level reaches a maximum height if 5 m and travels a horizontal distance of 11 m from the point of projection. Trace the path of the ball [Rectangle method]

## OR

2. a) Draw the projections of the following points on a common reference line:
i. $P, 25 \mathrm{~mm}$ below the HP and in the VP.
ii. Q, 40 mm behind the VP and in the HP
iii. R, 30 mm below the HP and 30 mm in front of the VP
iv. S, 25mm above the HP and 25 mm behind the VP
v. T, 25 mm above the HP and 30 mm in front of the VP
vi. U, in both the VP and HP
vii. V, 35 mm below the HP and 30 mm behind the VP.
b) The end $P$ of a line 60 mm long is 15 mm above the HP and 15 mm in front of the VP. The line is parallel to the HP and inclined to the VP. The length of the elevation is 40 mm . Draw the projections of the line and find the inclination of the line with the VP.

## UNIT-II

3. a) A line PQ has its ends 10 mm and 45 mm above the HP and the length of its front view is 70 mm . the line is inclined at $25^{\circ}$ to the HP. The HT of the line is 15 mm in front of the VP. Draw the projections of the line and find its true length and true inclinations with the VP. Also show its VT.
b) A circular lamina of diameter 60 mm is held vertical with its surface inclined at $45^{\circ}$ to the VP. Its centre is 40 mm above the HP and 30 mm in front of the VP. Draw its top and front views and also its traces.

## OR

4. a) The mid-point of a straight line $A B$ is 60 mm above the HP and 50 mm in front of the VP. The line measures 80 mm long and inclined at $30^{\circ}$ to HP and $45^{\circ}$ to VP. Draw its projections.
b) A hexagonal plate of side 35 mm rests on the HP on one of its sides perpendicular to the VP. Draw its projections when its surface is inclined at $50^{\circ}$ to the HP. Also show its traces.

## UNIT-III

5. Draw the projections of a cone, base 30 mm diameter and axis 50 mm long, resting on HP on a point of its base circle with the axis making an angle of $45^{\circ}$ with HP and its top view making an angle of $30^{\circ}$.

## OR

6. A sphere of 60 mm diameter rests on HP. It is cut by a section plane perpendicular to VP and inclined at $60^{\circ}$ to HP. The section plane passing through a point on the surface of the sphere at a distance of 20 mm from its bottom and on the left side. Draw the sectional top view and true shape of the section.

UNIT-IV
7. A right circular cone of base 60 mm diameter and 60 mm height stands vertically with its base on HP. A semi-circular hole of 36 mm diameter is cut through the cone such that the axis of the hole is parallel to HP, perpendicular to VP and intersecting the axis of the cone 20 mm above the base. The flat surface of the hole is parallel to HP and perpendicular to VP. Draw the development of the lateral surface of the cone with the hole.

## OR

8. A cone of base 60 mm diameter and axis 70 mm long, rests with its base on HP. It is completely penetrated by a horizontal cylinder of 30 mm diameter such that both the axes intersect each other at right angles. The axis of the cylinder is parallel to VP and 20 mm above the base of the cone. Draw the Projections of the solids showing the curves of intersection.
9. The frustum of a cone has its top and bottom diameters 35 mm and 50 mm respectively and altitude 53 mm . It rests in the top face of the frustum of a square pyramid. The sides of the top and bottom faces of the pyramid are 58 mm and 70 mm respectively. The height is 22 mm . Draw the isometric view.

## OR

10. Draw the front view, Top view and Side view of the object shown in figure below.


# B.Tech. I Year Supplementary Examinations May/June 2018 <br> Engineering Physics 

( Common to All Branches )
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. a) Derive the expression of wave length of monochromatic light using Newton's rings setup?
b) A parallel beams of light with wavelength $5893 \AA$ is incident on a glass plate $(=1.5)$ such that an angle of refraction into plate is $60^{\circ}$. Calculate the smallest thickness of the plate which will make it appear dark by reflection.
2. a) With the help of suitable diagram, explain the construction and working of Ruby laser.
b) Mention the applications of lasers in different fields 4 M

## UNIT-II

3. Derive the packing fractions for SC, BCC and FCC. Show that FCC is the most closely packed of three cubic structures..

OR
4. a) Explain the working and construction of piezoelectric method of ultrasonic wave production.

10M
b) Explain the different detection methods of Ultrasonic waves. 4M

UNIT-III
5. a) Show that the energies of a particle in a potential box are quantized. 10 M
b) Explain the Physical significance of wave function. 4 M

OR
6. a) What are the salient features of classical free electron theory? Mention its
merits and demerits.
b) On the basis of band theory, explain how the solids are classified into metals, semiconductors and insulators.
7. a) Distinguish between intrinsic and extrinsic semiconductors.
b) Explain the I-V characteristics of p-n Junction diode. 6M
c) Explain the direct and indirect band gap semiconductor 4M

## OR

8. a) Explain Hysteresis Curve.
b) Distinguish between soft and hard magnetic materials 7 M

UNIT-V
9. a) What is a superconductor? Write the general properties of superconductors 6 M
b) Explain the BCS theory of Superconductivity in detail. 8 M OR
10. a) Describe the method of chemical vapour deposition in nano materials preparation 6 M
b) Write the optical, thermal, mechanical and magnetic properties of Nanomaterials.
$\square$

## Code: 4G113

B.Tech. I Year Supplementary Examinations May 2018
Programming in C \& Introudution to Datastructures

## R-14

$\square$
( Common to CE, EEE, ME \& ECE )

Max. Marks: 70<br>Answer all five units by choosing one question from each unit ( $5 \times 14=70$ Marks )<br>$* * * * * * * * *$

1. a) Explain the importance of computer system? $\quad 8 \mathrm{M}$
b) Write an algorithm and flowchart on simple interest 6M

OR
2. a) Explain the structure of $C$ programming with simple example 4 M
b) Write a program on calculating area and perimeter of square and rectangle. 10M

UNIT-II
3. a) Define an Array? Write a c program on display 10 numbers using an array 7 M
b) Write a C program to check whether the given number is Divisible by 3 or not 7 M OR
4. a) Write a C program to find whether the given Character is alphabet, Digit or
any other
b) Write a C program to perform multiplication of two matrices 7M

## UNIT-III

5. Define a recursive function? Write a C program to find the factorial of a given
integer using recursive function
6. How to create dynamic memory allocation with suitable example 14M

UNIT-IV
7. a) Write a C program to write data to text file and read it 7M
b) Write a c program on Quick sort? 7 M

## OR

8. a) What are the string manipulation functions? Write a c program to find length
of the given string
b) Write a c program on Binary Search 7M

9. Write a C program to convert infix expression to postfix expression 14M
