Hall Ticket Number :	

Code: 4G513

B.Tech. I Year Supplementary Examinations May 2018

Engineering Drawing

(Common to EEE, ECE, CSE and IT)

Max. Marks: 70

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) ******

UNIT-I

1. Two straight lines OA and OB make an angle of 75° between them. P is a point 40 mm from OA and 50 mm from OB. Draw a hyperbola through P, with OA and OB as asymptotes, marking at least ten points.

OR

2. A circle of 50 mm diameter rolls on the circumference of another circle of 175 mm diameter and outside it. Trace the locus of a point on the circumference of the rolling circle for one complete revolution. Name the curve. Draw a tangent and a normal to the curve at a point 125 mm from the center of the directing circle.

UNIT-II

- 3. a) A point P is 15 mm above the H.P. and 20 mm in front of the V.P. Another point Q is 25 mm behind the V.P. and 40 mm below the H.P. Draw projections of P and Q keeping the distance between their projectors equal to 90 mm. Draw straight lines joining (i) their top views and (ii) their front views.
 - b) The front view of a line, inclined at 30° to the V.P. is 65 mm long. Draw the projections of the line, when it is parallel to and 40 mm above the H.P., its one end being 30 mm in front of the V.P.

OR

4. The front view of a line AB measures 65 mm and makes an angle of 45° with xy. A is in the H.P. and the V.T. of the line is 15 mm below the H.P. The line is inclined at 30° to the V.P. Draw the projections of AB and find its true length and inclination with H.P. Also locate its H.T.

UNIT-III

5. Draw a regular hexagon of 40 mm side, with it two sides vertical. Draw a circle of 40 mm diameter in its center. The figure represents a hexagonal plate with a hole in it and having its surface parallel to the V.P. Draw its projections when the surface is vertical and inclined at 30° to the V.P. Assume the thickness of the plate to be equal to that of a line.

OR

6. A plate having shape of an isosceles triangle has base 50 mm long and altitude 70 mm. It is so placed that in the front view it is seen as an equilateral triangle of 50 mm sides and one side inclined at 45° to xy. Draw its top view.

14M

14M

R-14

Time: 3 Hours

14M

14M

7M

7M

14M

Page 1 of 2

UNIT–IV

A square pyramid, base 40 mm side and axis 90 mm long, has a triangular face on the ground and the vertical plane containing the axis makes an angle of 45° with the V.P. Draw its projections.
 14M

OR

- B. Draw the projections of a cone, base 45 mm diameter and axis 50 mm long.
 When it is resting on the ground on a point on its base circle with the axis making an angle of 30° with the H.P. and 45° with the V.P.
- 9. A square pyramid base 40 mm side and axis 65 mm long, has its base on the H.P. and all the edges of the base equally inclined to the V.P. It is cut by a section plane, perpendicular to the V.P., inclined at 45° to the H.P. and bisecting the axis. Draw isometric projection of the retained part.

OR

10. Draw front view, left side view and top view of the given isometric view. 14M

Hall Tick	et Number :												Г			1
Code: 40	GC14	<u> </u>		I	1		1	I	L	I	L	Ĩ		R-	14	
	B.Tech.	l Yec	ar Su							atio	ns N	1ay 2	018	3		
			(thei on to				5)						
Max. M Answer	arks: 70 all five units	by c	-							-	unit	t(5x			3 Hours Aarks)	i
				C			***** UNI					·				
1. a)	Solve dy	у	_ S	in 2x				1-1								
	Solve $\frac{dy}{dx} + \frac{dy}{dx}$	$x \log x$	r 1	og x												7M
b)		he sy	/sten	n of	conf	ocal	and	coax	ial pa	arabo	olas	$y^2 = 4a$	a(x)	+a) is	s self	
	Orthogonal						0	R								7M
2. a)	Solve $(D^2 -$	+4D+	3)y	= sin	3xc	$\cos 2x$										7M
	Solve $(D^2 -$,					e me	thod	of va	riatio	on of P	arar	neter		7M
	() •					UNI									7 111
3. a)	Expand log((1+ e ^x	^s) is a	asce	nding	g pov	vers	of x								7M
b)	If $u = \frac{x+y}{1-xy}$, V =	= tan	$x^{-1} x +$	⊦ tan⁻	⁻¹ y t	hen f	ind -	$\partial(u,v)$ $\partial(x,y)$) v)						7M
4. a)	Examine th	e fun	ction	n for	extr	reme	O valu		f(x.	v = x	⁴ + \	1 ⁴ - 2 x	² +	4 x v–	2v²	7M
b)																7 101
	in ellipsoid	$\frac{x^2}{a^2}$	$+\frac{y^2}{b^2}$	$\frac{2}{2} + \frac{2}{6}$	$\frac{z^2}{z^2} =$	1										7M
5.	Trace the c	urve	9 a	y ² =	(<i>x</i> -	2a)	(x · O) 2							14M
	a í	$\sqrt{a^2 - y^2}$	<u> </u>					IX.								
6. a)	Evaluate \int_{0}^{a}	J	$\sqrt{a^2}$	-x ²	-y ²	dx.d	У									7M
b)	Evaluate	\int_{0}^{1}	\int_{0}^{1-x}	x d	z d x	dy										714
		0 y	0				UNIT	-IV								7M
7. a)	Find the La	place	Tra	nsfo	rms (of	i) si	n 2 <i>t</i> s	sin 3	t ii)	$L \left\{ e^{t} \right\}$	$\left(\cos 2t\right)$	$+\frac{\text{sir}}{\text{sir}}$	$\left(\frac{\ln 2t}{2}\right)$	>	7M
b)	Using convo	olutior	n the	eoren	n finc	d L ⁻¹	$\left\{\frac{1}{(s^2 + s^2)}\right\}$	s + 1) (s	$^{2} + 4$	$\overline{)}$						7M
o	Lloing Lonio	oo tro	nofe	orm o		?م)	0			iny #	÷/0	$) = \sqrt{1/7}$		0		
8.	Using Lapla	100 II 8	11510		oive		+ 20 UNI		y = S	II X II	y(U) = y (() =	0.		14M
9. a)	Find the di	rectio	nal	deriv	vative	e of	2xy	$+z^{2}$	at	(1, -	-1, 3) in th	ne c	direction	on of	7M
	$\overline{i} + 2\overline{j} + 3\overline{i}$	\overline{k} .														

b) Show that Curl grad f = 0 where f is a scalar point function 7M OR 10. Verify Green's theorem for $\int_C [(xy + y^2)dx + x^2dy]$ where C is bounded by y = x and y = x² ***

Hall ⁻	Ticke	et Number :	_
Code			
		.Tech. I Year Supplementary Examinations May/June 2018	_
	_	Engineering Chemistry	
		(Common to All Branches)	
	-	Time: 3 Hour all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
711200)
	、	UNIT-I	
1.	a)	Comment on hardness of water and mention any one of the method for estimation of hardness of water.	7M
	b)	What are boiler troubles? Write a note on disadvantages of boiler troubles.	7M
	2)	OR	
2.	a)	Explain the treatment of saline water by reverse osmosis in detail.	7M
	b)	Write any one of the methods for purification of lake water for domestic purpose	
		and comment on break point chlorine.	7M
3.	a)	What are fuel cells? Write the working procedure for H_2 - O_2 fuel cell	7M
	b)	Write a note on lead-acid batteries with chemical reactions involving.	7M
		OR	
4.	a)	Explain any two methods for prevention of corrosions.	7M
	b)	Explain the factors which effect the corrosion.	7M
5.	a)	UNIT-III Differentiate between thermoplastics and thermosetting plastics	7M
0.	b)	Write a brief notes on Vulcanization and compounding of rubber	7M
	2)	OR	,
6.	a)	What are conducting polymers? Explain the synthesis, mechanism and	
		applications of polyacetylene.	7M
	b)	Describe the preparation, properties and engineering applications of Buna-S and Buna-N rubbers	7M
			7 101
7.	a)	Explain the classification of fuels and write the characteristics for good fuel	7M
	b)	Explain Otto Hoffmann's by product oven process	7M
•	、	OR	
8.	a)	Explain the following i) Knocking ii) Octane number iii) Cetane number	7M
	b)	Compare the liquid fuels with gaseous fuels.	7M
	0)		7 101
9.	a)	What is Portland cement? Describe the manufacture of Portland cement by wet	
		method.	7M
	b)	What is setting and hardening of cement? Explain various reactions involved	71/
		in setting and hardening of cement OR	7M
10.	a)	What are lubricants? Discuss any three properties of lubricants.	7M
	b)	What are refractories? Discuss any three properties of refractories.	7M

Hall Ticket Number :								
			<u> </u>		<u> </u>	<u>]</u>	J	R-14

Code: 4G311

B.Tech. I Year Supplementary Examinations May 2018

Electronic Devices & Circuits

(Common to EEE & ECE)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

1. a) Find the equivalent resistance R_{ab} for the circuit shown in the figure. All the resistor values shown are in ohms.

8M

6M

8M

b) State maximum power transfer theorem. Derive the condition for transfer of maximum power to the load.

OR

2. a) Find the current flowing through the resistor R_1 using Thevenin's theorem.

b) For the circuit shown in the figure, find the voltage across the terminals a and b using the source transformation.

		UNIT–II	
3.	a)	Explain the temperature dependency of PN junction diode in detail with all necessary equations and graphs.	7M
	b)	What are the advantages of LC filter compared to other filters? Derive the expression for ripple factor r in a LC filters	7M
		OR	
4.	a)	Define transition capacitance and derive the relation for the same.	7M
	b)	Derive the expression for ripple factor r of a choke filter. What are the limitations of choke filter?	7M
		UNIT–III	
5.	a)	What is Thermal runaway? Derive the condition to prevent thermal runaways	7M
	b)	What is the need for heat sinks? Draw the thermal resistance circuit for a transistor and derive the relation for power flow in a series thermal resistance	
		circuit.	7M
		OR	
6.	a)	Explain the operation of the emitter bias circuit and derive the relation for stability factor S.	7M
	b)	Explain any three techniques to construct a transistor.	7M
		UNIT–IV	
7.	a)	Explain in detail the characteristics of JFET indicating all the important points and regions on it.	7M
	b)	What is the need for biasing in JFET? Explain and analyze the operating of a voltage divider bias.	7M
		OR	
8.	a)	Draw & explain the operation of voltage divider bias current using an n-channel MOSFET.	7M
	b)	What is Q point? How to set a Q point for a gate biased FET circuit.	7M
9	a)	Describe how the construction of Schottky diode is significantly different from the	
		conventional semiconductor diode. Describe its mode of operation.	7M
	b)	Write short notes on the operation of LED and explain BJT controlled circuits for LED.	7M
		OR	
10.	a)	Define and indicate the typical values of UJT parameters: (i) Inter-base resistance (ii) Intrinsic stand-off ratio (iii) Emitter saturation voltage (iv) Peak point emitter current (v) Valley point current.	7M
	b)	What are the essential differences between a semiconductor diode and a Tunnel diode? Explain the characteristics of a tunnel diode and draw the equivalent circuit diagram.	7M

Hall ⁻	Ticke	et Number :																
Code	e: 40	GC12							r	J		1					R-14	
	E	3.Tech. I Ye	ear S	Supp	olen	nen	tary	Exc	amir	natio	ons	Ma	y/	Jun	e2	2018	3	
					Eng	gine	eeri	ng F	hys	sics								
		. 70		(Con	nmc	n to	All E	Bran	ches	5)				-	•	.	
		arks: 70 II five units b	by ch	າວວຣ	ing o	one	-	stior ****	n fror	n ec	ach	unit	(5 x 1		-	: 3 Ha Mark	
								UNI	T–I									
1.	a)	Derive the e	expre	ssio	n of v	wave	e leng			noch	roma	atic li	igh	nt usi	ing	New	/ton's	
		rings setup?	?															11M
	b)	A parallel b			-			-							-		-	
		(µ=1.5) suc																014
		smallest thic	cknes	SS OF	the p	nate	whic	n wii OF		ke it a	appe	arda	arr	(Dy I	rene	ectio	n.	3M
2.	a)	With the he	elp of	f suit	table	diag	gram	-		the	cons	truct	ior	n an	d w	/orki	ng of	
	,	Ruby laser.	•				•	•									U	10M
	b)	Mention the	appl	icatio	ons o	f las	ers ir	n diff	erent	field	s							4M
								UNI										
3.		Derive the		-							CC.	Sh	٥W	v tha	t F	CC i	s the	4 4 5 4
		most closely	y pac	кеа	of thr	ee c	UDIC	struc OF		5								14M
4.	a)	Explain the	wor	king	and	cons	struc	-		ezoe	lectr	ic m	et	hod	of	ultra	sonic	
	,	wave produ		-					•									10M
	b)	Explain the	differ	ent o	detec	tion	meth	ods	of Ult	traso	nic v	vave	s.					4M
							L	UNI]								
5.	a)			-		-			•			are o	qua	antiz	ed.			10M
	b)	Explain the	Phys	ical	signif	ican	ce of			ctior).							4M
6.	a)	What are th	10 52	alient	feat	ures	of	OF izzel·		ree d	alect	ron f	the	orv7	νм	entic	n its	
0.	u)	merits and c			icat	uico	01 0	1000			51000			JOI y I	111	Critic		7M
	b)	On the basis	s of b	band	theo	ry, e	xplai	n ho	w the	e soli	ds a	re cla	as	sified	d int	to m	etals,	
	,	semiconduc	tors	and i	insula	ators												7M
			_			_	L	UNIT										
7.	a)	Distinguish										ctors						4M
	b)	Explain the					•											6M
	c)	Explain the	direc	t and	d indi	rect	band	• •		icon	ducto	or						4M
8.	a)	Explain Hys	teres	sis Ci	urve			OF	ί.									7M
0.	b)	Distinguish				ind h	ard r	naar	netic	mate	rials							7M
	-,				0			UNI		7								
9.	a)	What is a su	uperc	ondu	uctor	? Wr	ite th			prop	pertie	es of	รเ	uperc	cond	ducto	ors	6M
	b)	Explain the	BCS	theo	ory of	Sup	erco	nduc	tivity	in de	etail.							8M
			-					OF	-	_						-		
10.	a)	Describe the					•							•	•			6M
	b)	Write the opt	ical, t	herm	al, me	echai			nagne	etic p	roper	ties o	ot f	Nano	mat	erial	s.	8M
							不	* *										

Hall	Tick	et Number :	
		R-14	
Code	e: 4G	B.Tech. I Year Supplementary Examinations May 2018	
		Programming in C & Introudution to Datastructures	
		(Common to CE, EEE, ME & ECE)	
-		arks: 70 Time: 3 Ho er all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********	Urs
4		UNIT-I	01/
1.	a) b)	Explain the importance of computer system? Write an algorithm and flowchart on simple interest	8M 6M
	D)	OR	OIV
2.	a)	Explain the structure of C programming with simple example	4N
	b)	Write a program on calculating area and perimeter of square and rectangle.	10N
3.	a)	Define an Array? Write a c program on display 10 numbers using an array	7N
	b)	Write a C program to check whether the given number is Divisible by 3 or not OR	7N
4.	a)	Write a C program to find whether the given Character is alphabet, Digit or	
	u)	any other	7N
	b)	Write a C program to perform multiplication of two matrices	7N
5.		UNIT–III Define a recursive function? Write a C program to find the factorial of a given	
		integer using recursive function	14N
		OR	
6.		How to create dynamic memory allocation with suitable example	14N
		UNIT-IV	
7.	a)	Write a C program to write data to text file and read it	7N
	b)	Write a c program on Quick sort?	7N
		OR	
8.	a)	What are the string manipulation functions? Write a c program to find length	
	L)	of the given string	7N
	b)	Write a c program on Binary Search	7N
		UNIT-V	
9.		Write a C Program to implement Queue using arrays	14N
		OR	
10.		Write a C program to convert infix expression to postfix expression	14N