\square
Code: 4G513

B.Tech. I Year Supplementary Examinations May 2017

Engineering Drawing

(Common to EEE, ECE, CSE and IT)
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Construct a hyperbola, with the distance between the focus and the directrix as 50 mm and eccentricity as $3 / 2$. Also, draw normal and tangent to the curve at a point 30 mm from the axis.

OR

2. Draw an epicycloid of rolling circle 40 mm diameter, which rolls outside another circle of 150 mm diameter for one revolution.

UNIT-II

3. Draw the projections of the following points on a common reference line.
i) $P 35 \mathrm{~mm}$ behind the VP and 20 mm below the HP
ii) Q 40mm in front the VP and 30 mm above the HP
iii) R 50mm behind the VP and 15 mm above the HP
iv) S 40 mm below the HP and in the VP
v) T 30 mm in front of the VP and 50 mm below the HP

OR

4. A line PQ 70 mm long has its end $P 10 \mathrm{~mm}$ above H.P and 15 mm in front of V.P. Its top view and front view measure 60 mm and 40 mm respectively. Draw the projections of the line and determine its inclinations with H.P and V.P

UNIT-III

5. A hexagonal plate of side 20 mm rests on the HP on one of its sides inclined at 45° to the VP. The surface of the plate makes an angle of 300 with the H.P. Draw the front and top views of the plate.

OR

6. A regular pentagonal lamina $A B C D E$ of side 30 mm has one of its edges parallel to the VP and inclined at 30° to the HP. The pentagon is inclined at 45° to the VP. Draw the projections.

UNIT-IV
7. A Square pyramid of base side 30 mm and axis length 50 mm has one of its triangular faces in the VP and the axis parallel to and 25 mm above the HP. Draw its top and front views.

OR

8. Draw the projections of a hexagonal prism of base 25 mm side and axis 60 mm long resting on one of its corners of the base on HP. The axis of the solid is inclined at 450 to HP.

UNIT-V

9. A pentagonal prism, 30 mm edge of base and 65 mm height, stand on HP such that an edge of the base is parallel to VP and nearer to it. Draw the isometric view of the prism.

OR
10. Sketch the front view and top view of the object given in figure below.

B.Tech. I Year Supplementary Examinations May 2017
 Mathematics-I

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Solve $(x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)$ u
b) Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=x+e^{x} \cos x$.

$\bar{O} \bar{R}$

2. a) A body Stigin: ally at $80^{{ }^{x+}}$ ols down to $60_{o}^{\prime \prime 2}$ in 20 minutes, the temperature of the air being $400^{\circ} \mathrm{c}$. What will be the temperature of the co ${ }^{c}$ indy after 40 minutes from the original?

UNIT-II
 $f(x)=(x-1)(x-2)(x-3)$ in $(0,4)$, and find the appropriate value of ' c '.

OR

b) Expand $\begin{gathered}\text { tine maxima a'urin's series upto the term containg } \\ \text { esinx by Macla } \\ x^{4} .\end{gathered}$ 7M

5. a) Trace the curve U 7M
 7M

ō \bar{R}

6. a) Evaluate $\int_{0}^{-c_{2}} \int_{0}^{x+} \int_{0}^{x+y} e^{x+y+z} d z d y d x$. 7M
b) E-valuate $\int_{0}^{\infty} \int_{\sqrt{\pi}}^{0} J_{-\left(x^{2}+y^{2}\right)} d x d y$ by changing to polar co-ordinates and hence show that $\int_{0}^{\epsilon_{0}} e^{-x^{2}} d x=\frac{-\sqrt{\pi}}{2}$.

UNIT-IV
7. a) If a peiod lic function of pe iod ' $2 a$ ' is defined $l_{\text {, }}$

8. a) Apply convolution theorem to evaluate $\mathrm{OR}_{\mathbf{F}}$

-apteme transmomm tme to SNIT-V
9. a) Find
 \qquad
 x and $y=x^{2}$. rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leqq z \leq c$.
 7M
B.Tech. I Year Supplementary Examinations May 2017

Mathematical Methods

(Common to CSE and IT)

Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-

1. a) Solve the system of homogeneous equation
$X+3 y+2 z=0$
$2 x-y+3 z=0$
$3 x-5 y+4 z=0$
$X+17 y+4 z=0$
b)

Find the eigen values and eigenvectors of the matrix $\left[\begin{array}{ccc}3 & -2 & -5 \\ 4 & -1 & -5 \\ -2 & -1 & -3\end{array}\right]$

OR

2. $a)$

Diagonalize the matrix $A=\left[\begin{array}{lll}1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ and hence find A^{8}. Find the model matri
UNIT-II
3. a)

Show that $A=\left[\begin{array}{lll}i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0\end{array}\right]$ is Skew-Hermitian and also Unitary. Find the eigen values and eigen vectors.
b) By Lagrange's reduction transform the quadratic form $x^{2}+2 y^{2}-7 z^{2}-4 x y+8 x z$ to sum of the squares form

OR

4. a) Transform the equation form $x^{2}+3 y^{2}+3 z^{2}-2 y z$ into canonical form by orthogonal reduction. Determine the index, signature and nature of the quadratic form.

UNIT-III

5. a) Find a positive root of the equation $x e^{x}=1$ which lies between 0 and 1 by bisection method
b) Applying Lagrange's formula find a cubic polynomial for the following data

$$
\begin{array}{lccccc}
\mathrm{X} & 0 & 2 & 3 & 4 & 7 \\
\mathrm{Y} & -1 & 3 & 6 & 9 & 12
\end{array}
$$

OR

6. a) Find a real root of the equation $x^{3}-2 x-5=0$ using Newton's raphson method
b) Form the following table the values of x and $f(x)$ determine (i) $f(0.23)$ and (ii) $\mathrm{f}(0.29)$

X	0.20	0.22	0.24	0.26	0.28	0.30
$f(x)$	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

UNIT-IV

7. a) Evaluate $\int_{0}^{1} \frac{1}{1+x} d x$ by (i)Trapezoidal rule
(ii) Simpson's $\frac{1}{3}$ rd rule
b) Given $\frac{d y}{d x}=y-x$ when $y(0)=2$, find $y(0.1)$ and $y(0.2)$ correct to four decimal places by Runge-kutta method

OR

8 a) Fit a polynomial for the following data
$\begin{array}{lllllcl}\mathrm{X} & 0 & 1 & 2 & 3 & 4 & 5 \\ \mathrm{Y} & 2 & 5 & 7 & 9 & 12 & 18\end{array}$
b) Use the predictor- corrector formula for tabulation a solution of $10 \frac{d y}{d x}=x^{2}+y^{2}$,
$y(0)=1$ for the range $0.5 \leq x \leq 1$.
9. a) Find the Fourier series expansion of the function $f(x)=x^{2}$ in (-п, $\left.\pi\right)$
b) Solve $(y+z x) p-(x+y z) q=x^{2}-y^{2}$

OR

10. a) Obtain the half-range Fourier sine and cosine series for $f(x)=x$ in
$0<x<\frac{\pi}{2}$ and $f(x)=\pi-x$ in $\frac{\pi}{2}<x<\pi$.
b) Solve $3 u_{x}+2 u_{y}=0$ with $u(x, 0)=4 e^{-x}$ by method of separation of variables.
\square
Hall Ticket Number :
Code: 4G111
B.Tech. I Year Supplementary Examinations May 2017

Programming in C and Datastructures
(Common to CSE \& IT)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain about generation of programming languages.
b) What are the difference between keywords and identifiers?

OR

2. a) Why \#include is used in a c program?
b) Write a c program to print ASCII value of a character.
c) C Program to Find the Size of int, float, double and char

UNIT-II
3. a) What is operator? Explain about different types of operators in detail.
b) C Program to Make a Simple Calculator Using switch...case

OR
4. a) Write a C program find largest and smallest in n elements using arrays.
b) Explain any four string handling functions.

UNIT-III

5. a) What is an argument? Differentiate between formal arguments and actual arguments?
b) What is the purpose of main() function?

OR

6. a) Define pointer. How are pointer variables initialized?
b) C Program to Access Elements of an Array Using Pointer.

UNIT-IV

7. a) Elaborate different ways of passing structure as arguments in functions.
b) Write a C program to print maximum marks in each subject along with the name of the student by using structures. Take 3 subjects and 3 students records.

OR

8. a) Describe the following file functions.
i. fopen().
ii. fclose().
iii. getc().
iv. putc().
b) Write and explain linear search procedure with a suitable example.

UNIT-V

9. a) What is meant by linked list? What are the advantages and disadvantages in using linked lists?
b) Write a program to illustrate queue operations.

OR
10. a) What are the advantages and disadvantages of stack? Write a program to illustrate stack operations.
b) Describe the infix, postfix and prefix expressions with examples.

Code: 4GC13

B.Tech. I Year Supplementary Examinations May 2017

Engineering Chemistry

(Common to all Branches)

Max. Marks: 70
 UNIT-I

Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

1. a) What is meant by hardness of water? Give its units
b) What is meant by carbonate and non-carbonate hardness of water? Explain with examples.

OR

2 a) Write brief account on Priming and foaming.
b) 0.5 g of CaCO_{3} was dissolved in dil. HCl and diluted to 1000 mL .50 mL of this solution required 48 mL of EDTA solution for titration. 50 mL of hard water sample required 15 mL of EDTA solution for titration. 50 mL of same water sample on boiling, filtering etc, required 10 mL of EDTA solution. Calculate the diff erent kinds of hardness in ppm.

UNIT-II

3. Define galvanic cell. Why the anode of galvanic cell is -ve and cathode is +ve. Write the different electrode reactions occur at the electrodes.

OR

4. a) Discuss the how the nature of the metal influences the rate of corrosion.
b) Explain the rusting of iron with the help of electrochemical theory of corrosion.

UNIT-III

5. Write notes on
(a) Tacticity
(b) Vulcanization of rubber.

OR

6. What are the polymers? Explain the applications of polymers in different fields.

UNIT-IV

7. a) Explain the difference between gross calorific value and net calorific value.
b) What is the difference between proximate analysis and ultimate analysis of coal?

OR

8. a) What are the major constituent of LPG and Natural gas?
b) Why excess air is required for complete combustion?

UNIT-V

9. Define refractories? What are the characteristics of good refractory? Give the classification of refractories with examples.

OR
10. Define Viscosity? How is it determined by Redwood Viscometer?
\square

Code: 4GC12

R-14

B.Tech. I Year Supplementary Examinations May 2017

Engineering Physics

(Common to all Branches)

Max. Marks: 70 Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I1. a) Write few applications of lasers4M
b) Describe the newton's rings formation experiment. 10M
OR2 a) Explain the characteristics of lasers.4M
b) Explain the construction and working of optical fibre 10M
UNIT-II
3. a) What are Miller indices? Explain the procedure for finding Miller indices. Give one example 10M
b) Draw the planes (211), (100) and and (220) 4M
OR
4. a) What are properties of ultrasonics? 4M
b) Describe any one method for the detection of ultrasonics. 10M
UNIT-III
5. a) State and explain Heisenberg uncertainty principle 6M
b) Define de-Broglie dual nature of energy and derive its wavelength 8M
OR
6. a) Give the salient features of Kronig-Penny model. 10M
b) Discuss the origin of formation of energy bands 4M
UNIT-IV
7. a) With symbol explain the construction and working of Photo diode. Discuss its characteristics. 10M
b) Explain the role of LED \& Photo diode in optical fibre communication systems. 4 M
OR
8. a) Describe different types of magnetic materials in terms of their spin dipole alignment and its temperature dependence. 10M
b) Define magnetic dipole moment. List out various sources of magnetic dipole moment in magnetic materials. 4M
UNIT-V
9. a) What is Meissner effect? 4M
b) Explain about the flux exclusion principle exhibited by the superconductors 10M
OR
10. a) What are nanomaterials? Why do they exhibit different properties? 8M
b) Explain the types of nanomaterials based on dimensionalities 6M

