Hall Licket Number :		Hall Ticket Number :							
	imber ·								

Code: 4G513

B.Tech. I Year Supplementary Examinations May 2018

Engineering Drawing

(Common to EEE, ECE, CSE and IT)

Max. Marks: 70

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) ******

UNIT-I

1. Two straight lines OA and OB make an angle of 75° between them. P is a point 40 mm from OA and 50 mm from OB. Draw a hyperbola through P, with OA and OB as asymptotes, marking at least ten points.

OR

2. A circle of 50 mm diameter rolls on the circumference of another circle of 175 mm diameter and outside it. Trace the locus of a point on the circumference of the rolling circle for one complete revolution. Name the curve. Draw a tangent and a normal to the curve at a point 125 mm from the center of the directing circle.

UNIT-II

- 3. a) A point P is 15 mm above the H.P. and 20 mm in front of the V.P. Another point Q is 25 mm behind the V.P. and 40 mm below the H.P. Draw projections of P and Q keeping the distance between their projectors equal to 90 mm. Draw straight lines joining (i) their top views and (ii) their front views.
 - b) The front view of a line, inclined at 30° to the V.P. is 65 mm long. Draw the projections of the line, when it is parallel to and 40 mm above the H.P., its one end being 30 mm in front of the V.P.

OR

4. The front view of a line AB measures 65 mm and makes an angle of 45° with xy. A is in the H.P. and the V.T. of the line is 15 mm below the H.P. The line is inclined at 30° to the V.P. Draw the projections of AB and find its true length and inclination with H.P. Also locate its H.T.

UNIT-III

5. Draw a regular hexagon of 40 mm side, with it two sides vertical. Draw a circle of 40 mm diameter in its center. The figure represents a hexagonal plate with a hole in it and having its surface parallel to the V.P. Draw its projections when the surface is vertical and inclined at 30° to the V.P. Assume the thickness of the plate to be equal to that of a line.

OR

6. A plate having shape of an isosceles triangle has base 50 mm long and altitude 70 mm. It is so placed that in the front view it is seen as an equilateral triangle of 50 mm sides and one side inclined at 45° to xy. Draw its top view.

14M

14M

R-14

Time: 3 Hours

14M

14M

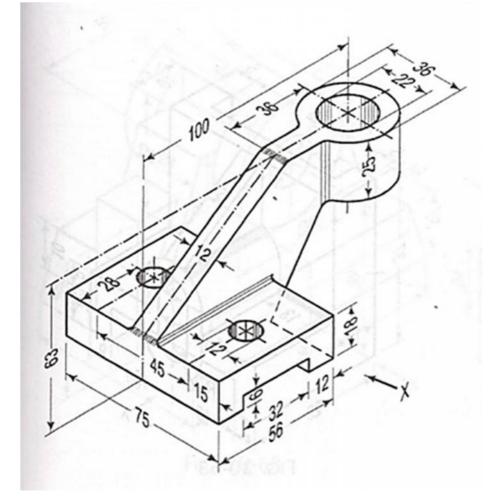
7M

7M

14M

Page 1 of 2

UNIT–IV


A square pyramid, base 40 mm side and axis 90 mm long, has a triangular face on the ground and the vertical plane containing the axis makes an angle of 45° with the V.P. Draw its projections.
 14M

OR

- B. Draw the projections of a cone, base 45 mm diameter and axis 50 mm long.
 When it is resting on the ground on a point on its base circle with the axis making an angle of 30° with the H.P. and 45° with the V.P.
- 9. A square pyramid base 40 mm side and axis 65 mm long, has its base on the H.P. and all the edges of the base equally inclined to the V.P. It is cut by a section plane, perpendicular to the V.P., inclined at 45° to the H.P. and bisecting the axis. Draw isometric projection of the retained part.

OR

10. Draw front view, left side view and top view of the given isometric view. 14M

Hall Tick	et Number :												Г			1
Code: 40	GC14	<u> </u>		I	1		1	I	L	I	L	Ĩ		R-	14	
	B.Tech.	l Yec	ar Su							atio	ns N	1ay 2	018	3		
			(thei on to				5)						
Max. M Answer	arks: 70 all five units	by c	-							-	unit	t(5x			3 Hours Aarks)	i
				C			***** UNI					·				
1. a)	Solve dy	у	_ S	in 2x				1-1								
	Solve $\frac{dy}{dx} + \frac{dy}{dx}$	$x \log x$	r 1	og x												7M
b)		he sy	/sten	n of	conf	ocal	and	coax	ial pa	arabo	olas	$y^2 = 4a$	a(x)	+a) is	s self	
	Orthogonal						0	R								7M
2. a)	Solve $(D^2 -$	+4D+	3)y	= sin	3xc	$\cos 2x$										7M
	Solve $(D^2 -$,					e me	thod	of va	riatio	on of P	arar	neter		7M
	() •					UNI									7 111
3. a)	Expand log((1+ e ^x	^s) is a	asce	nding	g pov	vers	of x								7M
b)	If $u = \frac{x+y}{1-xy}$, V =	= tan	$x^{-1} x +$	⊦ tan⁻	⁻¹ y t	hen f	ind -	$\partial(u,v)$ $\partial(x,y)$	$\left(\frac{v}{v}\right)$						7M
4. a)	Examine th	e fun	ction	n for	extr	reme	O valu		f(x.	v = x	⁴ + \	$1^{4} - 2x$	² +	4 x v–	2v²	7M
b)																7 101
	in ellipsoid	$\frac{x^2}{a^2}$	$+\frac{y^2}{b^2}$	$\frac{2}{2} + \frac{2}{6}$	$\frac{z^2}{z^2} =$	1										7M
5.	Trace the c	urve	9 a	y ² =	(<i>x</i> -	2a)	(x · O) 2							14M
	a í	$\sqrt{a^2 - y^2}$	<u> </u>					IX.								
6. a)	Evaluate \int_{0}^{a}	J	$\sqrt{a^2}$	-x ²	-y ²	dx.d	У									7M
b)	Evaluate	\int_{0}^{1}	\int_{0}^{1-x}	x d	z d x	dy										714
		0 y	0				UNIT	-IV								7M
7. a)	Find the La	place	Tra	nsfo	rms (of	i) si	n 2 <i>t</i> s	sin 3	t ii)	$L \left\{ e^{t} \right\}$	$\left(\cos 2t\right)$	$+\frac{\text{sir}}{\text{-}}$	$\left(\frac{\ln 2t}{2}\right)$	>	7M
b)	Using convo	olutior	n the	eoren	n finc	d L ⁻¹	$\left\{\frac{1}{(s^2 + s^2)}\right\}$	s + 1) (s	$^{2} + 4$	_						7M
o	Lloing Lonio	oo tro	nofe	orm o		?م)	0 - 2D			inv #	÷/0	$) = \sqrt{10}$		0		
8.	Using Lapla	100 II 8	11510		oive		+ 20 UNI		y = S	II X II	y(U) = y (() =	0.		14M
9. a)	Find the di	rectio	nal	deriv	vative	e of	2xy	$+z^{2}$	at	(1, -	-1, 3) in th	ne c	direction	on of	7M
	$\overline{i} + 2\overline{j} + 3\overline{i}$	\overline{k} .														

b) Show that Curl grad f = 0 where f is a scalar point function 7M OR 10. Verify Green's theorem for $\int_C [(xy + y^2)dx + x^2dy]$ where C is bounded by y = x and y = x² ***

Hall ⁻	Ticke	et Number :	_
Code			
		.Tech. I Year Supplementary Examinations May/June 2018	_
	_	Engineering Chemistry	
		(Common to All Branches)	
	-	rks: 70 Ill five units by choosing one question from each unit (5 x 14 = 70 Marks)	
711200)
	、	UNIT-I	
1.	a)	Comment on hardness of water and mention any one of the method for estimation of hardness of water.	7M
	b)	What are boiler troubles? Write a note on disadvantages of boiler troubles.	7M
	2)	OR	
2.	a)	Explain the treatment of saline water by reverse osmosis in detail.	7M
	b)	Write any one of the methods for purification of lake water for domestic purpose	
		and comment on break point chlorine.	7M
3.	a)	What are fuel cells? Write the working procedure for H_2 - O_2 fuel cell	7M
	b)	Write a note on lead-acid batteries with chemical reactions involving.	7M
		OR	
4.	a)	Explain any two methods for prevention of corrosions.	7M
	b)	Explain the factors which effect the corrosion.	7M
5.	a)	UNIT-III Differentiate between thermoplastics and thermosetting plastics	7M
0.	b)	Write a brief notes on Vulcanization and compounding of rubber	7M
	2)	OR	,
6.	a)	What are conducting polymers? Explain the synthesis, mechanism and	
		applications of polyacetylene.	7M
	b)	Describe the preparation, properties and engineering applications of Buna-S and Buna-N rubbers	7M
			7 101
7.	a)	Explain the classification of fuels and write the characteristics for good fuel	7M
	b)	Explain Otto Hoffmann's by product oven process	7M
•	、	OR	
8.	a)	Explain the following i) Knocking ii) Octane number iii) Cetane number	7M
	b)	Compare the liquid fuels with gaseous fuels.	7M
	0)		7 101
9.	a)	What is Portland cement? Describe the manufacture of Portland cement by wet	
		method.	7M
	b)	What is setting and hardening of cement? Explain various reactions involved	71/
		in setting and hardening of cement OR	7M
10.	a)	What are lubricants? Discuss any three properties of lubricants.	7M
	b)	What are refractories? Discuss any three properties of refractories.	7M

Code: 4G111

R-14

B.Tech. I Year Supplementary Examinations May 2018

Programming in C & Datastructures

(Common to CSE & IT)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT–I

- 1. a) Explain about Software Development Life Cycle.
 - b) What is an algorithm and flowchart and describe the various symbols in flowchart. Draw a flowchart for adding two numbers

OR

- 2. a) Explain the structure of a "C" programming language
 - b) Explain the "C" input and output library functions.

UNIT–II

3. Explain about operators in C programming language.

OR

4. Write the syntax for various control statements and give example for each control statement.

UNIT–III

- 5. a) What is parameter pass by value and pass by reference in functions? Write a program to exchange the values of two variables using functions in both methods
 - b) What is a pointer and write syntax for pointer declaration.

OR

- 6. a) Explain pointers to functions and command line arguments with examples
 - b) Explain about storage classes in C.

UNIT-IV

7. Explain nested structures and array of structures.

OR

- 8. a) Write and explain selection sort program with example
 - b) Write and Explain linear search method with example

UNIT-V

- 9. a) Explain infix, prefix and postfix notations. Give an example converting from one form to other forms
 - b) Write a program for insertion, deletion and searching of an item in the tree data structure.

OR

- 10. a) Define Stack and Queue and explain their operations.
 - b) Explain about insertion in Singly Linked List.

Hall Tick	et Number :]					
									<u> </u>				R-14	
Code: 4G	B.Tech.	l Ye		۸atl	nen	nent natio mon	cal	Met	hod		ns M	lay 20	18	
Max. Ma Answ	arks: 70 'er all five uni	ts by	cho			e qu		n fro	-	ոch ւ	unit (5 x 14	Time: 3 Hou = 70 Marks)	Jrs
1. a)	Define rank	of a	mat	rix ar	nd Fi	nd th			the f	ollow	/ing r	natrix		
	2 1	-7	14	4										
	$A = \begin{vmatrix} -6 & -3 \\ 1 & 0 \end{vmatrix}$	3 19 2	-3	38										
	$A = \begin{bmatrix} 2 & 1 \\ -6 & -3 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$	-5 -6		2										7M
b)	L	for co	onsis	stenc	-			•	•			if poss	sible find the	7M
							OF	R						
										[1	. 1	3		
2. a)	Find Eigen v	value	s an	d Eig	jenve	ector	s of a	a mat	t rix , A	. = 1	5	1		
										[3	3 1	1		7M
b)	Verify Cayle	•		on the	eorei	m for	the I	matri	хАа	ind fi	nd it	s invers	se	
	$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \\ 1 & -1 \end{bmatrix}$	1 -1 2												7M
	L	-					UNI	Г—II						7 101
3. a)	Reduce the	Quad	dratio	c forr	n 3 <i>x</i>	$^{2} + 5$	$v^{2} + 3$	$z^{2}-z^{2}$	2yz +	2zx	-2xy	, to the	canonical	
	form by an o	orthog	gona	l red	uctio	n								9M
b)	Find the nat	ure, s	signa	ature	and	inde	x of t	he q	uadra	atic f	orm	$x_1^2 + 2x$	$x_2^2 - 3x_3^2$	5M
							OF	R						
4. a)	Define comp	olex r	natri	ces a	and g	give e	exam	ples	for e	ach				6M
		Γ	2 <i>i</i>	2+	<i>i</i> 1	-i								
b)	Express A		2+i 1-i	—i 3i		3 <i>i</i> a 0	s <i>P</i> +	iQ	whe	re F	o is	real	and skew-	
	symmetric a	ind Q	is re	eal a	nd sy	/mme	etric							8M
5 0)			4 (1		- <i>t</i> ·	L	UNIT					4 .	4 a - a - a - a - a - a - a - a - a - a -	
	Find a real r to three dec	imal	place	es					-					7M
b)						-		x^4 –	-x = 1	10 c	orrec	t to th	ree decimal	71/
	places, usin	y ive	wton	-кар	onsol	n me	thod OF	2						7M
							Ur	•						

6. a) Find the cubic polynomial which takes the following values, hence find f(4)

х	0	1	2	3
f(x)	1	2	1	10

b) Apply Lagrange's method to find the value of f(x) when x=3 for the data

Х	0	1	2	5	
f(x)	2	3	12	147	
					UNIT-IV

7. a) Using the method of least squares fit the curve $y = ax^2 + bx + c$ to the following

y 1 1.2 1.8 2.5 3.6 4.7 6.6 9.1								7	
	у	1	1.2	1.8	2.5	3.6	4.7	6.6	9.1

b) Evaluate $\int_{0}^{0} \frac{dx}{1+x^2}$ by using (i) Trapezoidal rule (ii) Simpson's 1/3 rule

(iii) Simpson's 3/8 rule

OR

- 8. a) Solve $\frac{dy}{dx} = x + y$, y(1) = 0. Find y(1.1) and y(1.2) by Taylor's series method. Compare the results with its exact value 7M
 - b) Using Runge-Kutta method of fourth order, find y for x = 0.1, 0.2, 0.3 given that $\frac{dy}{dx} = xy + y^2$, y(0) = 1

9. a) Expand $f(x) = x \sin x$ as a Fourier series in the interval (0, 2f) 7M b) Obtain the Half range Fourier for $y = x^2$ in (-f, f) and deduce that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots = \frac{f^4}{90}$ 7M

- OR
- 10. a) Form the partial differential equation by eliminating arbitrary function from the equation $z = (x + y)f(x^2 y^2)$ 7M
 - b) Use the method of separation of variables, solve $\frac{\partial^2 z}{\partial x^2} 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$ ***

7M

Code: 4GC15

7M

7M

Hall ⁻	Ticke	et Number :																
Code	e: 40	GC12										1					R-14	
	E	3.Tech. I Ye	ear S	Supp	olen	nen	tary	' Exc	amir	natio	ons	Ma	y/	Jun	e 2	2018	8	
					Eng	gine	eeri	ng I	hys	sics								
		. 70		(Con	nmc	n to	All I	Bran	che	s)				-	•	0.11	
		arks: 70 Il five units k	by ch	100s	ing o	one	-	stior ****	n fror	n ec	ach	unit	(!	5 x 1		-	: 3 Ho Mark	
								UNI	T–I									
1.	a)	Derive the e	expre	ssio	n of v	wave	e leng			noch	roma	atic li	igh	nt us	ing	Nev	vton's	
		rings setup?	?															11M
	b)	A parallel b			-										-		-	
		(µ=1.5) suc																014
		smallest thic	cknes	SS OF	the p	nate	whic	n wii OF		ke it a	appe	arda	arr	(Dy)	rene	ectio	n.	3M
2.	a)	With the he	elp of	f sui	table	diag	gram	-		the	cons	truct	ior	n an	d w	/orki	ng of	
	,	Ruby laser.	•				•	•									U	10M
	b)	Mention the	appl	icatio	ons o	f las	ers ir	n diff	erent	t field	ls							4M
								UNI										
3.		Derive the packing fractions for SC, BCC and FCC. Show that FCC is the most closely packed of three cubic structures												4 4 5 4				
		most closely packed of three cubic structures 14											14M					
4.	a)	Explain the working and construction of piezoelectric method of ultrasonic																
	,											10M						
	b)											4M						
							L	UNI							_			
5.	a)			-		-			-			are o	qua	antiz	ed.			10M
	b)	Explain the	Phys	ical	signif	ican	ce of			octior	۱.							4M
6.	a)	What are th	10 52	alient	feat	ures	of	IO izzele		ree i	alect	ron f	the	orvá	2 M	entid	on its	
0.	u)	merits and o			iteat	ureo	01 0	1000			51000			JOIY		Critic		7M
	b)	On the basi	s of b	band	theo	ry, e	xplai	n ho	w the	e soli	ds a	re cla	as	sified	d int	to m	etals,	
	,	semiconduc	tors	and	insula	ators												7M
			_			_	L	UNI			_							
7.	a)	Distinguish										ctors						4M
	b)	Explain the					•											6M
	c)	Explain the	direc	t and	d indi	rect	band	• •		icon	ducto	or						4M
8.	a)	Explain Hys	teres	sis C	urve			OF	(7M
0.	b)	Distinguish				and h	ard r	naar	netic	mate	erials							7M
	/	3						UNI		7								
9.	a)	What is a su	uperc	ondu	uctor	? Wr	ite th			prop	pertie	es of	รเ	upero	cond	duct	ors	6M
	b)	Explain the	BCS	thec	ory of	Sup	erco	nduc	tivity	in de	etail.							8M
		.						OF	-	. <u>.</u>								
10.	a)	Describe the					•							•	•			6M
	b)	Write the opt	ical, t	nerm	ai, m	echai		and r **	nagne	etic p	roper	ties o	ot I	vano	mat	erial	S.	8M
							不	ጥ ጥ										