Hall	Ticke	et Number :	
Code		R_1	4
Code		. Tech. I Year Supplementary Examinations December 2015	
		English	
Мо	IX. N	(Common to All Branches) 1arks: 70 Time: 3 Ho	ours
Answ	er a	If ive units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	
4		UNIT-I Discuss the character elected of Dehemat in Cabuliwalleb	4 4 5 4
1.		Discuss the character sketch of Rahamat in Cabuliwallah OR	14M
2.	a)	Write about the early life and inventions of G.D Naidu	7M
	b)	How would the alternative technology suggested by writer make things better?	7M
		UNIT–II	
3.		E.K. Federov says "The modern life requires balanced understanding and	
		adjustment to climate and other natural elements" give reasons and recommendations to support this statement.	14M
		OR	
4.	a)	What is the theme of "IF" poem? Use examples from the poem to support your	
		ideas.	7M
	b)	Write the correct form of the verb for the following sentence:	
		 My family (buy) some land in southern France recently. They (build) a summerhouse there at the moment. 	
		ii. Jonathon (watch) the news on TV every day and it (help) him with his English.	
		iii. My car (break) down when I (drive) home from work.	
		iv. When he (found) Microsoft, Bill Gates was only 20 years old. He had (already write) his first computer programme six years earlier.	
		v. I (just see) the film "The Da Vinci Code" Have (you see) it too?	
		vi. Unless he (sell) more he won't (get) much money.	
		vii. Agnes (be) (work) at bank since 2009	7M
5.		UNIT-III Why does Spain figure among the top countries in the world as well as Europe	
5.		Why does Spain figure among the top countries in the world as well as Europe that are using solar power?	14M
6.		OR What types of conflict do you see in the story of "The Gift of the Magi"?-	
0.		discuss	14M
		UNIT–IV	
7.		"Water: the Elixir of Life". Justify the title that constitute conversation and utilization of water is thus fundamental for human welfare?	14M
8.	2)	OR Write a report to the Indian Express to create awareness about the preventive	
0.		measures to control the breeding of mosquitoes.	7M
	b)	Write about early life and education of Jagadish Chandra Bose?	7M
9.		UNIT-V What does the lesson " <i>The Secret of Work</i> " tells us about being unattached in	
э.		all that we do?- discuss	14M
		OR	
10.		What changes did Bhabha bring about in the scientific world in India?	14M

Hall	Ficke	et Number : R-14	4							
Code	e: 40	GC13								
	В.	Tech. I Year Supplementary Examinations December 2015								
		Engineering Chemistry								
Max	110	(Common to All Branches)	0.1.170							
_		Time: 3 Ho Il five units by choosing one question from each unit (5 x 14 = 70Marks ********								
		UNIT–I								
1.	a)	Give the detailed procedure for the estimation of dissolved oxygen present								
		in water with principle and chemical equations.	8M							
	b)	Explain why NH ₄ Cl+NH ₄ OH buffer is added in the determination of hardness in water by EDTA	6M							
		OR								
2.	a)	What is breakpoint chlorination? State its significance	6M							
	b)	Explain the lon exchange process for the removal of hardness of water with a neat diagram	8M							
		UNIT–II								
3.	a)	Explain various factors influence the corrosion of metals	10M							
	b)	Describe sacrificial anodic protection								
		OR								
4.		What are batteries? Describe the construction of Lead-acid battery with the reactions occurring during charge and discharge.	14M							
		UNIT–III								
5.		Explain any two moulding techniques of plastics with neat labelled diagrams	14M							
		OR								
6.	a)	Describe doped conducting polymers with suitable examples	8M							
	b)	Write a note on vulcanization of rubber	6M							
		UNIT–IV								
7.		Give an account of the different methods used for the synthesis of petrol	14M							
		OR								
8.		A sample of coal was found to have the following percentage composition								
		C = 75%, H+5.2%, O=12.1%, N=3.2%, ash=4.5%.								
		(i) Calculate the weight & volume of air required of combustion of 1kg of coal	8M							
		(ii) Calculate the higher calorific value and lower calorific value of coal sample	6M							
		UNIT-V								
9.		What is meant by setting and hardening of cement? Write the chemical								
		reactions that take place during setting and hardening of cement concrete and explain	14M							
		OR								
10.		What are viscosity and viscosity index of lubricating oil? Discuss the								
		functions of lubricants	14M							

· · · · · · · · · · · · · · · · · · · ·	5Å.	
Cold M	Hall T	icket Number : R-14
NB-Yen Coha W	Code :	B.Tech. I Year Supplementary Examinations December 2015 Engineering Drawing
	Max. N	(Common to EEE, ECE, CSE & IT) Aarks: 70 Time: 3 Hours
		Answer all five units by choosing one from each unit (5 x 14 = 70Marks)
	1.	The foci of an ellipse are 90mm apart and the minor axis is 65mmlong. Draw the ellipse. Draw a tangent to it at a point on it 15mm from major axis. OR
	2.	Draw a hypocycloid of a circle of 40mm dia. Which rolls inside another circle of 160mm dia. Draw a tangent to it at a point 65mm from the center of the directing circle?
		UNIT-II
	3.	One end of a line 75mm long is 20mm above H.P. and 25mm in front of V.P. The line is inclined at 30 [°] to H.P. and the top view makes an angle of 45 [°] with XY. Draw the projections of the line and find its true inclination with V.P. OR
	4.	A line AB is 75mm long. A is 50mm in front of V.P. and 15mm above H.P. B is 15mm in front of V.P. Top view of AB is 50mm long. Draw its projections and determine its inclinations with reference planes.
	5.	A regular pentagon 50mm side has an edge in the V.P., inclined at 45 [°] to H.P. but the surface making an angle of 30 [°] with V.P. Draw its projections. OR
	6.	Draw the projections of a hexagon of 40mm side with a side parallel to and 20mm above H.P. but inclined at 60° to V.P. The surface of the hexagon is inclined at 30° to H.P.
	7.	A hexagonal prism, base 35mm side and axis 60mm long is resting on one of its base edges in the H.P., inclined at 30° to V.P. and the axis inclined at 45° to H.P. Draw its projections.
	8.	OR Draw the projections of a cone, 50mm base dia and 60mm long axis, having one of its generators in the V.P. inclined at 30 ^o to H.P., the apex being in H.P.
	9.	UNIT-V Draw the isometric projection of a hexagonal prism, base 30mm long edges & axis 70mm long, the axis being vertical.
	40	OR
	10.	Draw the isometric view of the solid whose projections are given in the figure:

L

Ι

15

Page No: 4

Page No: 5

* . . . 1

 \sim

Hall	Tick	et Number :												R	-14	7
Code	: 4 G	C12												L		_
	В. Т	ech. I Yec	ar Su	pp	lem	ent	ary	Exc	ımin	atic	ons	Dec	embe	er 201	5	
					-			-	hysi							
May	Ma	rks: 70		((Com	mor	n to ,	All B	ranc	hes)			Time: 3		c
		five units by	y chc	oosii	ng o		Ues *****		from	n ea	ch u	nit (5
							U	I-TIV								
1.	a)	State the ne	cessa	ary c	ondi	tions	for s	usta	ined	inter	feren	ce.				2M
	b)	Write the pri	•				•				•					
		the nth dark	•				•	Exp	lain	why	the ri	ngs a	are circu	ular and	the	
	-)	center is dar				-		P		()	4.00				4 40	10M
	c)	In a Newton' to 1.27 cm v	•		•							•	•			
		Calculate the										150 0		giass p	atc.	2M
								OF								
2.	a)	What do you			• •	•		inve	rsion	and	exp	lain I	how the	popula	ation	
		inversion ac														6M
	b)	Discuss the						••					<i>с</i> . 1 <i>с</i> 1			4M
	c)	Explain step	and g	rade	ed inc	lex s	-			d mul	ti-mo	de ol	ptical fib	ers in d	etail.	4M
0	-)							IIT-II								
3.	a)	What are the	• •						- 4h-		l	4:	a.f	:	. h	3M
	b)	What is piezoelectric								e pr	oauc	tion	of uitra	asonics	; by	8M
	c)	A quartz cry						•		oratin	a in	fund	amenta	l mode	and	OW
	-,	produces ul									•					
		calculate the	e frequ	ueno	cy of	ultra	sonic	cs.								ЗM
								OF								
4.	a)	What are mi								•						5M
	b)	'Describe La							deter	mina	tion (of cry	stal stru	cture.		6M
	c)	Derive Bragg	rs law	/ OT /	k-ray	aittra										3M
F			ook -	ra'-				I IT-II								4 8 4
5.	a) b)	Explain Heis		•			• •	•			ortial			n on ini	finito	4M
	b)	Derive an expotential we		SION	101	ine e	energ	ly iev	ver or	a p	antici	e eno	ciosed i	n an in	Imite	8M
	c)	An electron is		ined	to a	box c	of len	ath 1	0 ⁻⁹ m	, calo	culate	the i	minimun	n uncert	ainty	•
	,	in its velocity						•							,	2M
								OF								
6.	a)	Using Kroni	•	•							•••	•				714
	b)	contains a n On the bas					-			•		•				7M
	D)	semiconduc					y no	vv lí	10 20	JiiuS	are	UIdS	SINCU I		nais,	4M
	c)	Explain Ferr					n fun	ction	. Illus	strate	e the	effec	t of tem	peratur	e on	
	,	، 1. بالين جالي ممالك												-		~~~

the distribution

3M

UNIT-IV

7.	a)	Define the terms	
		(i) magnetic permeability	
		(ii) magnetic susceptibility	
		(iii) magnetic induction and(iv) magnetization	6M
	b)	Explain the origin of magnetic moment? Find the magnetic dipole moment due	
	- /	to orbital and spin motions of electron.	6M
	c)	A para magnetic material has a magnetic field intensity of 10 ⁴ A/m. If the susceptibility of the material at room temperature is 3.7x10 ⁻³ , calculate the	2M
		magnetization and magnetic flux density in the material. OR	2111
0	、		
8.	a)	What is the Hall effect? Describe an experimental set-up for the measurement	714
		of the Hall coefficient. What are the applications of Hall effect	7M
	b)	Explain the construction and working of LED.	7M
		UNIT-V	
9.	a)	What is Meissner effect? Explain in detail with neat diagrams.	4M
	b)	Describe the differences between type-I and type-II super conductors.	4M
	c)	Explain any four applications of superconductors.	6M
		OR	
10.	a)	How are optical, thermal, mechanical and magnetic properties of nanoparticles	
		vary with their size?	9M
	b)	Describe any three processes by which nano materials are fabricated.	5M

Hall Ticket Number :	
Code: 4GC14	4
B. Tech. I Year Supplementary Examinations December 2015	
(Common to All Branches)	
Max. Marks: 70 Time: 3 H	ours
Answer all five units by choosing one question from each unit (5 x 14 = 70Marks	5)
UNIT-I	
1. a) Solve $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$	6M
d^2	OW
b) Solve $\frac{d^2y}{dx^2} + y = \sec x$ by the method of variation of parameters	8M
OR	
2. a) A radioactive substance disintegrates at a rate proportional to its mass. When	
the mass is 10 mg the rate of disintegration is 0.051 mg per day. How long	
will it take for the mass of 10 mg to reduce to its half?	7M
b) Solve $(D^2 - 4D + 1)y = e^{2x} \cos 3x$	7M
3. a) Calculate the approximate value of $\sqrt[6]{65}$ using the Lagrange's mean value	
theorem.	6M
 A rectangular box open at the top is to have volume of 32 cubic feet. Find the dimensions of the box requiring least material for its construction. 	8M
OR	OIVI
4. a) Expand $f(x) = \tan x$ using Meclaurin's theorem up to 3 rd degree.	GM
b) Find the shortest and the longest distances from the point (1, 2,-1) to the	6M
sphere $x^2+y^2+z^2=24$.	8M
UNIT-III	
5. a) Trace the curve y=x ³ .	6M
b) Change of order of integration and evaluate $\int_{0}^{\infty} \int_{0}^{e^{-y}} dx dy$.	
b) Change of order of integration and evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dx dy$.	8M
OR	
$\frac{\pi}{4} a \sin \theta$	
6. a) Evaluate $\int_{0}^{\frac{\pi}{4}} \int_{0}^{a\sin\theta} \frac{r}{\sqrt{a^2 - r^2}} dr d\theta$	GM
b) Evaluate $\iint xvz dx dv dz$ over the positive octant of the sphere $x^2 + v^2 + z^2 = a^2$	6M
b) Evaluate $\iiint xyz dxdydz$ over the positive octant of the sphere $x^2+y^2+z^2=a^2$.	8M

Page 1 of 2

6M

UNIT-IV

7. a) Evaluate
$$L\left(\frac{\cos 2t - \cos 3t}{t}\right)$$

b) Using Convolution theorem, evaluate
$$L^{-1}\left[\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right]$$
 8M

OR

8. Solve
$$y^{11} + 2y^1 - 3y = \sin t$$
, $y(0) = 0$, $y^1(0) = 0$, using Laplace transforms. 14M

9. a) Find the angle between the surfaces $x^2+y^2+z^2=12$ and $x^2+y^2-z=12$ at (2,2,2) 7M

b) Show that the vector $(x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}$ is irrotational and find it's scalar potential. 7M

OR

10. Verify Green's theorem in the plane for
$$\int_C [(3x^2 - 8y^2)dx + (4y - 6xy)dy]$$
, where
C encloses the region bounded by $y = \sqrt{x}$ and $y = x^2$. 14M

Hall Ticket Number :							D 14
						-	K-14

Code: 4GC15

Max. Marks: 70

B. Tech. I Year Supplementary Examinations December 2015 Mathematical Methods

(Common to CSE & IT)

Time: 3 Hours

4M

10M

7M

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

- 1. a) Define the real matrices and give an example.
 - b) Define the rank of the matrix. Find the rank of the matrix A= $\begin{vmatrix} 2 & -2 & 3 & 1 \\ 1 & -1 & 2 & 5 \\ 3 & 1 & 1 & 2 \end{vmatrix}$

by reducing it to Normal form.

OR

- 2. a) State and prove Caley-Hamilton theorem.
 - b) Test for the consistency of the following system of equations and solve if consistent:

$$2x_1 + x_2 + 2x_3 + x_4 = 6, x_1 - x_2 + x_3 + 2x_4 = 6, 4x_1 + 3x_2 + 3x_3 - 3x_4 = -1, 2x_1 + 2x_2 - x_3 + x_4 = 10 7M$$

UNIT-II

- 3 a) Verify that the sum of the eigen values of A equals the trace of A and their product equals |A|, for the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$ 7M
 - b) Reduce the quadratic form $2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 2x_1x_3 4x_2x_3$ to the canonical form by orthogonal transformation. Also find the rank, index, signature and the nature of quadratic form. 7M

OR

- 4. a) Show that A = $\begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is a skew-Hermitian matrix and also unitary. 7M
 - b) Verify that the eigen vectors of the real symmetric matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ are orthogonal in pairs. 7M

7M

7M

7M

UNIT-III

5.	a)	Find a real root of the equation $x^3 - x - 11 = 0$ by bisection method.	7M
	b)	Find a positive root of $Cosx - xe^x$ using Newton-Raphson method.	7M

OR

- 6. a) Find a real root of $xe^x = 3$ using Regula-Falsi method.
 - b) Evaluate $\sqrt{28}$ to four decimal places by Newton-Raphson Method. 7M

UNIT-IV

7. a) Consider the following data for $g(x) = \frac{\sin x}{r^2}$

			50		
x	0.1	0.2	0.3	0.4	0.5
g(x)	9.9833	4.9696	3.2836	2.4339	1.9177

Calculate g(0.25) accurately using Newton's forward method of interpolation. 7M

b) Evaluate $\int_{0}^{2} e^{-x^{2}} dx$ using Simpon's rule, Taking h = 0.25.

OR

8. a) Using Picard method, Solve the IVP y' = 1 + xy, y(0) = 1.

b) Fit a straight line to the given data

Х	1	2	3	4	5	6	
Y	1200	900	600	200	110	50	7M

UNIT-V

9. a) Find the Fourier series expansion of
$$f(x) = \begin{cases} x, & -f < x < 0 \\ 0, & 0 < x < f \end{cases}$$
 7M

b) Find the half range sine series of $f(x) = 1 + \cos x$ in (0, f) and hence deduce the sum of $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$ 7M

10. a) Eliminate the arbitrary constants and arbitrary function respectively

i)
$$ax^{2} + by^{2} + z^{2} = 1$$

ii) $z = xy + f(x^{2} + y^{2})$ 7M

- b) Find the complete integral of the first order the differential equation
 - i) pq = 1ii) $z = p^2 - q^2$ 7M

Hall Ticket Number :						D 14
						K-14

Code: 4G111

B. Tech. I Year Supplementary Examinations December 2015

Programming in C & Datastructures

(Common to CSE & IT)

Max. Marks: 70

Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

- 1. a) What is a high-level programming language? Explain the advantages of high level language compared to assembly language
 - b) Define identifiers, keywords, constants, enumerated types and typedef and give example for each one

OR

- 2. a) Describe the basic steps in software development
 - b) Explain the basic computer components.

UNIT-II

- 3. a) What is an array? Give examples for Single dimension and double dimension arrays. Write a program to read and write data using arrays
 - b) Write syntax to for loop, while loop, do-while loop and give examples for each. Explain the difference between while and do-while

OR

- 4. a) Explain the string manipulations with examples
 - b) Write a program to find the factorial of a given number.

UNIT-III

- 5. a) Explain the storage classes and give an example for each one.
 - b) Write syntax for function declaration, definition and calling. Write a program to convert temperature given in degree Celsius to Fahrenheit units using functions with parameter passing.

OR

- 6. a) Write a program to multiply the given two *matrices* using array or points
 - b) Explain dynamic memory allocation and de-allocation functions with examples

UNIT-IV

- Define and write the syntax of the structure and union and give example for each one 7. a)
 - b) Write a program for sorting given numbers using bubble sort technique

OR

- 8. a) What is a FILE? Explain the formatted input and output functions and give examples
 - b) Write a program to write data to a file

UNIT-V

- a) Define Stack data structure. Explain the operations on Stack data structure 9.
 - b) Define Queue data structure. Explain the operations on Queue data structure OR
- 10 a) What is a singly linked list? Explain the operations on list with routines
 - b) Write a program to insert an item in the tree.