Hall Tic	cket Number :											r	
Code: 1	19BE11T							<u> </u>	I	<u> </u>		R-19	
M.Tech. I Semester Regular & Supplmentary Examinations June 2022													
Research Methodology and IPR (Common to All Branches)													
Max. Marks: 60 Answer all five units by choosing one question from each unit (5 x 12 = 60 Marks) ********													
						UN	IIT—I						
1.	1. Explain the characteristics of a good research problem?												
						(OR						
2.	Elucidate the c	different	types	of Da	ta c	ollec	tion p	oroce	ess.				
					_								
							IIT–II						
3.	Elucidate the w write a good re			s of c	olle	cting	revie	ew of	litera	ature	. Also	explain how to	
						(OR						
4.	Elucidate the f	ormat of	resea	arch p	oropo								
						UN	IT–III	I					
5.	Write a short n	ote on:											
	a) Plagiari												
	b) Resear	ch Ethic	S										
0			_	_			OR						
6.	Explain the fo	ormat o	frese	earch	pro	opos	al.						
7	E handalar (h. a. a	- 4 4 * - 1					IT–IV						
7.	Elucidate the p	batent in	rorma	tion a	nd c			i.					
		,				(OR						
8.	Elucidate the s	scope of	pater	it righ	ts.								
						1 1 4 1	UT \/	,					
9.	What are the p	atentee	rights	unde	er th		l IT–V lian F		t Act	, 197	'0?		
0.			0				OR			,			
10.	How to admini	strating	oaten	t svste	em								

Hall Ticket Number :							
			1	1	1		R-19

Code: 19B11ET

Max. Marks: 60

M.Tech. I Semester Regular & Supplementary Examinations June 2022 Structural Health Monitoring, Repair and Rehabilitation of Structures

(Structural Engineering)

Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x12 = 60 Marks)

UNIT-I

1. What are the various types of construction and design errors? Discuss in detail the impact of these errors on concrete strength and durability.

OR

- 2. a) What are various actions of inhibitors to prevent corrosion? Explain in detail about the various corrosion inhibitors.
 - b) Discuss in detail the various coatings for steel rebars and concrete.

UNIT-II

- 3. a) Describe the initial and detailed inspections to the damaged structures and the purpose of these inspections.
 - b) Discuss in detail the types of polymer concrete and their applications.

OR

4. What is a super plasticizer? Discuss in detail the mechanism of super plasticizer in cement concrete or mortar.

UNIT-III

5. Define Shoring and under pinning. Explain the shoring and under pinning methods with the help of diagrams.

OR

6. Differentiate between Granite and shotcrete? Describe the procedure for Epoxy injection method of crack repair?

UNIT–IV

7. Discuss the Techniques for strengthening of RCC structures including the conventional and advanced techniques with neat sketches.

OR

8. Explain in detail the repair method to overcome the low member strength and deflection of an RCC beam.

UNIT-V

9. Define Maintenance. Classify the maintenance and explain in detail the various corrosion mitigation techniques adopted for RCC structures.

OR

10. What is SHM? What are the basic components of SHM? Explain the need for structural Health Monitoring of RCC structures.

	e: 19B11AT	R-19		
	M.Tech. I Semester Regular & Supplementary Examinations June	2022		
	Theory and Analysis of Plates			
Ν	(Structural Engineering) Nax. Marks: 60 Time: 3	3 Hours	;	
	Answer all five units by choosing one question from each unit ($5 \times 12 = 60 \text{ M}$			
	*****	Marks	со	
	UNIT–I			
1.	Derive the expression for deflection of a uniformly loaded rectangular plate			
	with simply supported edges subjected to cylindrical bending.	12M	1	
0)	OR	014		
2. a)	Define a plate? Explain the different types of plates.	6M	1	
b)	Explain in plane bending and transverse bending with sketches.	6M	1	
3.	UNIT-II			
З.	Derive the general differential equation for symmetrical bending of laterally loaded circular plates.	12M	2	
	OR			
4.	Derive the expression for deflection of a simply supported circular plate with			
	hole at centre subjected to moments.	12M	2	
	UNIT-III			
5.	Derive the expression for deflection of a rectangular plate with simply			
	supported edges subjected to combined action of uniform lateral load and uniform tension.	12M	3	
	OR			
6.	Derive the expression for deflection of a circular plate subjected to			
	combined action of lateral load and tension.	12M	3	
	UNIT–IV			
7.	Derive the expression for deflection at the centre of a uniformly loaded	12M	4	
	orthotropic rectangular plate with simply supported edges. OR	ı∠IVI	4	
8.	Derive the governing differential equation for the orthotropic plates.	12M	4	
			•	
9.	Calculate the deflection of the simply supported rectangular plates			
9.	Calculate the deflection of the simply supported rectangular plates subjected to uniformly distributed load by finite difference method.	12M	5	
9.		12M	5	
9. 0.	subjected to uniformly distributed load by finite difference method.	12M	5	
	subjected to uniformly distributed load by finite difference method. OR Give brief explanation about the application of the following approximate	12M	5	
	subjected to uniformly distributed load by finite difference method. OR Give brief explanation about the application of the following approximate methods for the solution of the plate problems.	12M 12M	5	

	Hall Ticket Number :	
	Code: 19B112T	R-19
	M.Tech. I Semester Regular & Supplementary Examinations .	lune 2022
	Theory of Elasticity and Plasticity	
	(Structural Engineering) Max. Marks: 60 Answer any five full questions by choosing one question from each unit (5x	Time: 3 Hours 12 = 60 Marks)
		Marks
	UNIT–I	
1.	Derive the Hooke's Law and Differential equations of equilibrium?	12M
	OR	
2.	Derive Plain Stress and Plain strain with suitable examples	12M
2	UNIT-II	
3.	Derive Solutions by polynomials and Saint Venant's principle.	12M
4.	OR Explain the effect of Shear Force on Defection of a Beam and calculate the	2
	displacement components.	12M
5.	UNIT–III Obtained the solution for bending of a curved bar by a force at the end.	12M
	OR	
6.	Derive symmetrical stress distribution in a plate for two dimensiona	ıl
	problems in polar coordinates.	12M
	UNIT–IV	
7.	Derive the differential equation of equilibrium in 3-dimensional view.	12M
8.	Derive the expression for maximum shear stress in three dimensional case and show the planes of maximum shear stress on principal coordinate	
	system	12M
•	UNIT-V	
9.	Derive the solution for torsion of a prismatic bar. Also obtain the solution fo an elliptic cross-section.	r 12M
	OR	
10.	Explain in brief the membrane analogy for torsion	12M

Hall Ticket Number :						[
						R-19

Code: 19B111T

M.Tech. I Semester Regular & Supplementary Examinations June 2022

Advanced Structural Analysis

(Structural Engineering)

Max. Marks: 70

Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT-I

- 1. a) Explain degrees of freedom of different types of structural elements.
 - Explain the static and kinematic indeterminacy of various structural components. b)

OR

- 2. a) Derive the stiffness matrix of a two noded truss element of length 'L, and axial rigidity 'AE'.
 - b) Obtain the force-displacement equation of a beam element.

UNIT-II

3. A cantilever beam of length 4m carries a point load of 30KN at the end B, where a spring of stiffness EI/L supports the beam vertically upwards. Find the spring reaction using stiffness matrix method.

OR

Analyse the continuous beam ABC using flexibility matrix method. Span AB=5m and BC= 6m. The 4. beam is fixed at A and supported on rollers at B and C. Span AB carries a udl of 35KN/m over the entire span and BC carries a central point load of 50KN. Sketch the BMD.

UNIT-III

Analyse the portal frame ABCD whose both ends A and D are fixed. AB=4m , BC= 4m and 5. CD=2m. BC is loaded with a udl of 30KN/m and at B a horizontal load of 50KN acts towards C. Use displacement method.

OR

Analyse the L bent ABC with vertical member AB=5m and a horizontal member BC= 4m. The 6. horizontal member BC carries a point load of 8 KN at the center. End A is fixed. Use force method of analysis.

UNIT-IV

- 7. a) Brief the term element approach.
 - Write the procedure to analyse a continuous beam using direct stiffness method. b)

OR

- 8. Explain a) Transformation of matrices from local to global coordinates.
 - b) Static condensation.

UNIT-V

Solve the following equations using Gauss elimination method. 9.

> $5x_1 - 2x_2 + 4x_3 = 5$ $-2x_1 - x_2 + x_3 = 1$ $4x_1 + x_2 + 0x_3 = 6$

OR

- Find Cholesky decomposition for the following matrix shown below. 10.
 - 6 -22 -23 -1 3 2 -1