\square
Hall Ticket Number :

B.Tech. I Year Supplementary Examinations Nov/Dec 2016 Electronic Devices \& Circuits

(Common to EEE \& ECE)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) State and Prove Superposition theorem.
b) State and Prove Kirchoff s Voltage and Current Laws with necessary diagrams.

OR

2. a) State and Prove Maximum Power transfer theorem.
b) The effective resistance of two resistors connected in series is100, when connected in parallel, the effective resistance value is 20 . Determine the values of the two resistors.

UNIT-II

3. a) Explain the Energy Band diagrams of P and N Type Semiconductors with neat sketches.
b) Distinguish between Avalanche and Zener breakdown mechanisms.

OR

4. a) Explain the operation of Full wave rectifier with CLC filter.

$$
\begin{aligned}
& \text { b) A half wave rectifier is supplied from } 230 \mathrm{~V}, 50 \mathrm{~Hz} \text {. supply with step down ratio of } 3: 1 \\
& \text { resistance load } 10 \mathrm{~K} \text {.The diode } \mathrm{R}_{\mathrm{f}} \text { is of } 75 \text { while transformer secondary resistance } \\
& \text { is } 10 \quad \text {.Calculate Maximum, Average, RMS value of current, DC output voltage, } \\
& \text { Efficiency and Ripple factor. }
\end{aligned}
$$

UNIT-III

5. a) Explain the principle of operation of BJT in CE configuration with neat sketches 7M
b) Explain why biasing is needed for Transistor operation

OR

6. a) Discuss in brief about Thermal run away
b) Discuss in brief about self-bias of a BJT and also derive an expression for its Stability factor.

UNIT-IV

7. a) Explain Drain characteristics of JFET with neat sketches.
b) The P channel FET has $l_{D s s} 12 \mathrm{~mA} . \mathrm{V}_{\mathrm{P}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=1.6 \mathrm{~V}$. Calculate $\mathrm{I}_{\mathrm{D}}, \mathrm{g}_{\mathrm{m}}$ and g_{m}.
8. a) Explain the operation of MOSFET in detail with necessary diagrams.
b) Differentiate between FET and BJT.

UNIT-V

9. a) With a neat diagram explain the principle of operation of Tunnel diode.
b) Draw the equivalent circuit of UJT and explain its operation. 7M

OR
10. a) Draw the structure of SCR and explain any one application of it. 6M
b) Write short notes on Varactor diode and Photo transistor.

B.Tech. I Year Supplementary Examinations Nov/Dec 2016
 Engineering Drawing

(Common to EEE, ECE, CSE and IT)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. A circle of 50 mm diameter rolls on the circumference of another circle of 175 mm diameter and outside it. Trace the locus of a point on the circumference of the rolling circle for one complete revolution. Name the curve. Draw a tangent and normal to the curve at a point 125 mm from the centre of the directing circle.

OR

2. a) The major and minor axis of an ellipse is $120 \& 80 \mathrm{~mm}$. Draw an ellipse by arcs of circles method.
b) Construct a parabola by rectangle method with the base dimension 140 mm and height 100 mm . And also draw the tangent and normal to the parabola at any suitable point

UNIT-II

3. The front view of a line $A B$ measures 65 mm and makes an angle of 45° with $x y$. A is in the H.P. and the V.T. of the line is 15 mm below the H.P. The line is inclined at 30° to the V.P. Draw the projections of AB and find its true length and inclination with the H.P. Also locate its H.T.

OR

4. A line $A B, 75 \mathrm{~mm}$ long is in the second quadrant with the end A in the H.P. and the end B in the V.P. The line is inclined at 30° to the H.P. and at 45° to the V.P. Draw the projections of $A B$ and determine its traces.

UNIT-III

5. Draw the projections of a circle of 75 mm diameter having the end A of the diameter $A B$ in the H.P., the end B in the V.P, and the surface inclined at 30° to the H.P. and at 60° to the V.P.

OR

6. Draw the projections of a rhombus having diagonals 125 mm and 50 mm long, the smaller diagonal of which is parallel to both the principal planes, while the other is inclined at 30° to the H.P.

UNIT-IV

7. A tetrahedron of 75 mm long edges has one edge parallel to the H.P. and inclined at 45° to the V.P. while a face containing that edge is vertical. Draw its projections.
8. A hexagonal prism, base 30 mm side and axis 75 mm long, has an edge of the base parallel to the H.P. and inclined at 45° to the V.P. Its axis makes an angle of 60° with the H.P. Draw its projections.
9.

Draw the front view and top view of shown fig. 1

OR

10. Convert the orthogonal projections shown in fig 2 into isometric view of the actual picture.

B.Tech. I Year Supplementary Examinations Nov/Dec 2016 Engineering Chemistry
 (Common to All branches)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Comment on impurities of water and mention the units of hardness in detail.

b) Calculate the temporary and permanent hardness of water sample containing $\left.\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}=7.3 \mathrm{mg} / \mathrm{L}, \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}=16.2 \mathrm{mg} / \mathrm{L}, \mathrm{MgCl}_{2}=9.5 \mathrm{mg} / \mathrm{L}, \mathrm{CaSO}_{4}=13.6 \mathrm{mg} / \mathrm{L}\right) \quad 7 \mathrm{M}$

OR

2. a) Write any two internal treatment methods for industrial water purification.
b) Explain Ion-Exchange process in detail.

UNIT-II

3. a) What are fuel cells? Write the working procedure for $\mathrm{H}_{2}-\mathrm{O}_{2}$ fuel cell 7 M
b) Write a note on lead-acid batteries with chemical reactions involving. 7M

OR
4. a) Explain any two methods for prevention of corrosions. 7M
b) Explain the factors which effect the corrosion. 7 M

UNIT-III

5. a) Write the engineering applications of Bakelite and nylon-6,6.
b) Explain the preparation, properties and applications of Buna-N rubber. 7M
6. a) Write the synthesis and applications of polyacetylene and polyanline. 7M
b) Comment on the role of biodegradable polymers in present scenario.

UNIT-IV

7. a) Determine the calorific value of a fuel by using bomb calorimeter. 7M
b) Write a note on synthesis of petrol from Fischer Tropsch's synthesis.

OR

8. a) What is power alcohol? Mention the advantages and disadvantages of power
alcohol.
b) Comment on the following
i) Producer gas
ii) Water gas
iii) Biogas

UNIT-V

9. a) What is the composition of Portland cement? Explain setting and hardening of it 7M
b) Comment on refractories 7M OR
10. a) What are the properties of lubricants? Explain the theory of lubrication. 7 M
b) Write any seven applications of refractories. 7M

B.Tech. I Year Supplementary Examinations Nov/Dec 2016
 Engineering Physics
 (Common to All Branches)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the Interference due to thin films and draw the conditions for constructive and destructive Interference.
b) A parallel beam of light of wavelength $5890 \mathrm{~A}^{\circ}$ is incident on a thin glass plate of refractive index 1.5 such that the angle of refraction in to the plate is 60°. Calculate the smallest thick ness of the glass plate which will appear dark by reflection.

OR

2. a) Describe the construction and working of He-Ne laser with energy level diagram
b) Derive an expression for numerical aperture of an optical fiber and calculate acceptance angle of an optical fiber if the refractive index of core and cladding are 1.623 and 1.522 respectively.

UNIT-II

3. a) What are the miller indices? How they are obtained?
b) Describe the powder method of determination of crystal system. 7M
c) Copper has fcc structure and the atomic radius is 0.1278 nm . Calculate the inter planar spacing of (110) and (212) planes.

OR

4. a) What are the properties of Ultrasonics? How do you produce Ultrasonics by Piezo electric oscillator method
b) Calculate the frequency of the fundamental note emitted by Piezo-electric crystal. Use the following data:
vibrating length $=3 \mathrm{~mm}$, Youngs modulus $=8 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ and density of the crystal $=2.5 \mathrm{gm} / \mathrm{cm}^{3}$.

UNIT-III

5. a) Give an account of Heisenberg's uncertainty principle. Outline an idealized experiment to bring out its significance.

b) Write down the Schrodinger time independent wave equation for matter waves. Calculate energy levels of a particle confined in an infinite potential well.

OR

6. a) Discuss the Kronig-Penny model for the motion of an electron in a periodic potential.
b) Find the relaxation time of conduction electrons in a metal of resistivity $1.54 \times 10^{-4} \mathrm{Ohm}-\mathrm{m}$, if the metal has 5.8×10^{28} conduction electrons per m^{3}
UNIT-IV
7. a) Write the principle, working of the P-N junction diode. 7M
b) Explain the construction and working of
(i) LED
(ii) Photo diode 7M
OR
8. a) Define Magnetic moment. Explain the origin of magnetic moment at the atomic field. 5M
b) Write short notes on(i) Ferromagnetic materials(ii) Ferrites.6M
c) What are the applications of Ferrites 3M
UNIT-V
9. a) What are cooper pairs? How they produce super conductivity in materials. 5M
b) Explain Type I and Type II super conductors 5M
c) The Transition temperature for lead is 8.7 K . The maximum critical field for the material is $6 \times 10^{5} \mathrm{~A} / \mathrm{m}$. Lead has to be used as a super conductor subjected to a magnetic field of $3 \times 10^{6} \mathrm{~A} / \mathrm{m}$ 4M
OR
10. a) Write the properties of Carbon nanotubes 8M
b) Write any four applications of Nanomaterials 6 M

B.Tech. I Year Supplementary Examinations Nov/Dec 2016
 Mathematics-I

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Solve the differential equation $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$
b) Find the solution for the differential equation $x \frac{d y}{d x}+y=x^{3} y^{6}$

OR

2. a) Solve the differential equation $\left(1+y^{2}\right) d x+\left(x-e^{-\tan ^{-1} y}\right) d y=0$
b) The rate at which the bacteria multiply is proportional to the instantaneous number present. If the original number doubles in 2 hours, in how many hours will it triple?

7M
UNIT-II
3. Verify Rolle's Theorem for the function $f(x)=x(x+3) e^{-x / 2}$ in $[-3,0]$ and find the value of C

OR

4. Using Taylor's theorem, express the polynomial $2 x^{3}+7 x^{2}+x-6$ in powers of $(x-1)$.

UNIT-III

5. a) Evaluate $\iint \frac{r d r d \theta}{\sqrt{a^{2}+r^{2}}}$ over one loop of the lemniscate $r^{2}=a^{2} \cos 2 \theta \quad 7 \mathrm{M}$
b) Evaluate $\iint r^{3} d r d \theta$ over the area bounded between the circles 7 M
$r=2 \cos \theta$ and $r=4 \cos \theta$ OR
6. a) Evaluate the integral by changing the order of integration $\int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-y}}{y} d y d x \quad 7 \mathrm{M}$
b) By changing the order of integration, evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} d y d x \quad 7 \mathrm{M}$

UNIT-IV

7. a) Find the Laplace transform of
i) $\left\{\frac{\sin 3 t \cdot \cos t}{t}\right\}$.
ii) $\left\{t^{2} \sin 2 t\right\}$
7M
b) Find $L^{-1}\left\{\frac{s^{2}}{\left(s^{2}+4\right)\left(s^{2}+9\right)}\right\}$ Using Convolution theorem. 7M

OR

8. a) Find the Laplace Transform of $\left\{\left(\sqrt{t}-\frac{1}{\sqrt{t}}\right)^{5}\right\}$
b Find $L^{-1}\left\{\frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}\right\}$ Using Convolution theorem. 7M

UNIT-V

9. a) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $Z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$
b) Find a unit vector normal to the surface $x^{3}+y^{3}+3 x y z=3$ at the point $(1,2,-1) \quad 7 \mathrm{M}$
OR
10. Using divergence theorem Prove that
i) $\int_{S} \bar{R} \cdot d \bar{s}=3 V$
ii) $\int_{S} \nabla r^{2} d \bar{s}=6 V$

Code: 4G113

B.Tech. I Year Supplementary Examinations Nov/Dec 2016

Programming in C and introduction to Data Structures

(Common to CE, EEE, ME and ECE)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) What are computing environments?
b) Discuss tokens in C with examples. $\quad 7 \mathrm{M}$

OR
2. a) What is an algorithm and flow chart and what is the need of these? 5 M
b) Draw the flow chart and write the algorithm to find the given number is prime or
not. 9 M

UNIT-II

3. a) Discuss operator precedence and associatively in C.
b) Explain with examples, Bitwise shift operators.
4. a) What is a String? List and explain various string handling functions in C.

b) How single dimensional arrays and multidimensional arrays are declared and
initialized? Explain with suitable examples.

UNIT-III

5. a) Write a C program to swap the elements using pointers and functions.

OR
6. a) Why function declaration and function definition have to be differentiated.
b) What are command line arguments? Write a C program using command line
arguments which finds the maximum, minimum and sum of four numbers. 9 M

UNIT-IV
7. a) Briefly explain how to pass structures to functions with example.
b) Explain about selection sort with suitable example.

OR

8. a) Write a C program to search an element in a list using binary search.
b) Explain about File opening functions.

UNIT-V

9. a) Discuss the implementation of stacks using arrays.
b) Write the algorithm for converting infix expression to postfix expression. And illustrate each step for the following expression:

$$
(m+n)^{\star}(k+p) /(g / h)^{\wedge}\left(a^{\wedge} b / c\right)
$$

10. Explain the basic operations on circular queues with examples. Also write the procedure for the same.
