Hall Ticket Number :

R-11 / R-13

Code: 1G131

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

Advanced Data Structures Through C++

(Common to CSE \& IT)
$\begin{array}{cc}\text { Answer any five questions } \\ & \text { All Questions carry equal marks (} 14 \text { Marks each) }\end{array}$

1. a) How the member functions can be defined? Explain.
b) What is friend function? What are the merits and demerits of using friend function?
2. a) Explain the concept of function overloading and operator overloading with an
example. 7M
b) Explain Base Class and Derived Class with Example. 7M
3. a) Define Abstract Data Type? Explain the implementation of stack ADT in details. 7M
b) How we can measure the performance of an algorithm? Discuss in detail. 7M
4. Explain about linear probing and quadratic probing techniques used in hashing. 14 M
5. a) Define and explain in detail about Priority Queue ADT. 4M
b) Explain about external sorting and Multi way merge. 10M

6 Write and trace the algorithm to construct binary search tree for the values: 5, $4,2,1,3,6,8,7$. Also write the algorithm to search for a given element and trace it for the values 8 and 10 .
7. Write notes on the following:
a) Splay trees.
b) Red-black trees.
8. a) Write and explain the Knuth-Morris-Pratt algorithm with suitable algorithm. 7M
b) Write and explain Brute force algorithm.

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017
Basic Electrical Engineering
(Common to CSE \& IT)
Max. Marks: 70
Time: 3 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Derive and explain the basic circuit components
b) Three resistances $1.5,3 \Omega$ and 3.5 are connected in parallel and the combination is connected in series with a resistance of 1.95 . Find the equivalent resistance of the circuit. What current will it draw of it is connected to a 30v supply
2. a) State and explain Thevenin's theorem. With an example 7M
b) Find the voltage across 4 resistor in the circuit shown using Superposition theorem and also verify it using mesh analysis.

3. a) Define and explain the following terms related to an alternating quantity:
(i) Instantaneous value
(ii) Time period
(iii) Frequency (iv) Amplitude
(v) Cycle
(vi) Angle of frequency
b) A 50 Hz sinusoidal current has peak factor 1.4 and form factor 1.1. Its average value is 20A. The instantaneous value of current is 15 A at $\mathrm{t}=0 \mathrm{sec}$. Write the equation of current and draw its wave form

4. a) Write the advantages and disadvantages of 3-phase circuits over 1-phase circuits.

b) Three impedances $(3+\mathrm{j} 4)$ ohm, $(5+\mathrm{j} 0)$ ohm and $(2-\mathrm{j} 2)$ ohm are connected in delta to a $100 \mathrm{~V}, 3-$ phase, and 50 Hz balanced supply. Calculate the line currents and total power consumed
b) Explain the Swinburne's test on D.C shunt motors with suitable diagram
b) A $200 / 400 \mathrm{~V}, 50 \mathrm{~Hz} 1$ phase transformer on test gave following readings: O.C (I.v): 200V, 0.7A, 70W, S.C (h.v): $15 \mathrm{~V}, 10 \mathrm{~A}, 80 \mathrm{~W}$. Find voltage regulation at 0.8 p.f lagging at full load.7M

7. a) Explain rotating magnetic field produced in a three phase induction motor with
relevant phasor diagrams
b) A 3 phase, 50 Hz induction motor has a starting torque which is 1.25 times full load torque and a maximum torque which is 2.5 times full load torque. Neglecting stator resistance and rotational losses and assuming rotor resistance, find (a) Slip at full load (b) Slipat maximum torque
8. a) Explain with neat sketch the construction and working of a MI voltmeter 7M
b) Write short notes about digital multimetes

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

Electronic Devices and Circuits

(Common to CSE \& IT)

Max. Marks: 70
Time: 3 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Derive the expression for diode current equation 8 M
b) Distinguish between zener and avalanche breakdown mechanism
2. a) Explain the working of full wave rectifier with neat diagram and with relevant wave forms.
b) Explain FWR with C-filter and derive the expression for ripple factor.
3. a) Explain the operation of a BJT in CE configuration. Give its input-output characteristics. Define β.
b) For a PNP transistor $\alpha=0.98$ connected in CB configuration and reverse saturation
current is $10 \mu \mathrm{~A}$. Calculate base and collector current for emitter current of 5 mA . 4 M
4. a) Draw the transistor biasing circuit using fixed bias arrangement and explain its principle with suitable analysis.
b) Define Thermal runaway? Derive the condition to avoid Thermal runaway.
5. a) With a neat construction diagram explain the principle of operation of a N channel JFET. Give its characteristics.
b) Explain the principle of operation of N -channel Depletion MOSFET with neat sketch and draw its characteristic.
6. a) Draw the h-parameter equivalent circuit for a typical CE amplifier and derive
the expression for A_{i}, R_{i}, A_{v} and R_{0}.
b) Define class-B amplifier? Derive the expression for conversion efficiency.
7. a) Explain concept of feedback with block diagram.
b) Draw the circuit diagram of voltage- series feedback amplifier and derive the expression for input and output resistance.
8. a) Show that the gain of wien bridge oscillator using BJT amplifier must be at least 3 for the oscillation to occur.
b) A crystal $\mathrm{L}=0.4 \mathrm{H}, \mathrm{C}=0.085 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{M}}=1 \mathrm{pF}$ with $\mathrm{R}=5 \mathrm{~K}$. Find
i) Series resonant frequency
ii) Parallel resonant frequency
iii) Find Q factor of the crystal

Code: 1G133
II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017 Mathematical Foundations of Computer Science
(Common to CSE\&IT)

Max. Marks: 70

Time: 3 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Show that $\sim(p \vee(\sim p \wedge q))$ and $\sim p^{\wedge} \sim q$ are logically equivalent.
b) Check whether the following are well formed formulae or not.
(i) $\sim\left(p^{\wedge} q\right)$.
(ii). $\sim p \vee q$.
2. a) How the validity of an argument can be checked by using truth table? Give an
example.
b) Show that $r v s$ follows logically from premises:
$c \vee d,(c \vee d) \rightarrow \sim b, \sim b \rightarrow\left(a^{\wedge} \sim b\right)$ and $\left(a^{\wedge} \sim b\right) \rightarrow r \vee s$.
3. a) What is a function? State the types of functions. 7 M
b) What is an inverse function? Explain with an example.
4. Prove that "Every cyclic is abelian, but the converse is not true".
5. Solve the recurrence relation an-7an-1+10an-2=7.3n+4n
6. a) How many three digit numbers are there which are even and have no repeated
digits?
b) Find the number of arrangement of the letters of MISSISSIPPI.
7. a) Find the chromatic number of a graph with only n - isolated vertices
b) Let G be graph with 11 or more vertices. Show that G is non-planar.
8. a) Give an example of a regular, connected graph of 6 vertices, which is not complete.
b) Prove that C is the only cycle graph isomorphic to its complement.
