Code: 4G233

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

Electrical Circuits-I

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. In the circuit of fig 1 , simplify the network using network reduction technique to find the current supplied by the battery.

Fig 1
OR
2. In the network of fig 2, find the voltage across the 5 ohm resistor using mesh current analysis.

3. a) Define and determine the Average and RMS values of a sinusoidal voltage.
b) A series circuit having a resistance and a capacitance draws a current of 2.4 A from a $100 \mathrm{~V}, 50 \mathrm{~Hz}$, single phase ac supply. The power consumed in the circuit is 80 W . Determine the values of resistor and capacitor.

OR
4. a) Derive the formula for the resonant frequency of a series RLC circuit.
b) Two impedances $Z_{1}=(8+j 6)$ ohm and $Z_{2}=\left(4-j X_{c}\right)$ ohm are connected in parallel. Find the value of X_{C} such that the circuit resonates.

UNIT-III

5. State and explain Norton's theorem with an example.

OR
6. In the circuit of fig 3, determine the impedance to be connected across the load terminals for maximum power transfer if the load consists of a resistance in series with a reactance. Also, find the value of the maximum power transferred.

Fig 3
7. a) Define the hybrid parameters of a 2 port network.
b) Determine the Z parameters of the network shown in fig 4.

Fig 4
OR
8. Two, 2 port networks are connected in parallel. The Z parameters of the networks are given below:
$Z_{A}=\left[\begin{array}{cc}11 & 3 \\ 4 & 5\end{array}\right]$ and $Z_{B}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
Determine the Y parameters of the parallel combination.

UNIT-V

9. a) Three inductances $\mathrm{L}_{1}=2 \mathrm{H}, \mathrm{L}_{2}=1.8 \mathrm{H}$ and $\mathrm{L}_{3}=2.6 \mathrm{H}$ are connected in series as shown in fig 5 . Determine the equivalent inductance.

Fig 5
b) Deduce the equation for the coefficient of coupling when two coils are magnetically coupled.
10. a) For the circuit of fig 6 , construct the graph of the network and obtain the tie set matrix.

Fig 6
b) Define the term dual networks. Elaborate the procedure of obtaining the dual of the given network.
\square

Code: 4G234

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

Electro Magnetic Fields

(Electrical and Electronics Engineering)

Max. Marks: 70
 UNIT-I

Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

1. a) Define electric field intensity? Derive the expression for electric flux density due to an array of point charges?
b) hour infinite uniform sheets of charge are locate as follows:
$0 \mathrm{pC} / \mathrm{m}^{2}$ at $\mathrm{y}=7,-8 \mathrm{pC} / \mathrm{m}^{2}$ at $\mathrm{y}=3,6 \mathrm{pC} / \mathrm{m}^{2}$ at $\mathrm{y}=-1,-18 \mathrm{pC} / \mathrm{m}^{2}$ at $\mathrm{y}=-4$. Find有 at origin.

OR

2. a) State different types of charge distributions and express each of them in terms of their charge densities.
b) Given the potential $v=10 / r^{2} \sin \Theta \cos \Theta$ volts. Find D at $(2, \pi / 2,0)$. Calculate the work done in moving a $10 \mu \mathrm{C}$ charge from $\mathrm{A}\left(1,30^{\circ}, 120^{\circ}\right)$ to $\mathrm{B}\left(4,90^{\circ}, 60^{\circ}\right)$

UNIT-II

3. a) Define electric dipole and dipole moment. Find potential at a point due to the dipole.
b) Find the capacitance of a co-axial capacitor.

OR

4. a) Derive the expressions for equivalent capacitance when two dielectrics in a capacitor are placed such that the interface is (i) parallel (ii) normal to electric field intensity
b) The radii of the two spheres differ by 4 cm and the capacitance of the spherical condensers is 53.33 pF . if the outer sphere is earthed, calculate the radii assuming air as dielectric.

UNIT-III

5. Deduce the expression for magnetic field intensity at a point due to a circular current carrying wire.

OR

6. The conducting triangular loop in the figure carries a current of 10A. Find it
$(0,0,5)$ due to side-1 of the loop.

UNIT-IV

7. Prove that torque experienced by a current loop placed in a uniform magnetic
field is normal to the plane containing the magnetic dipole moment and
magnetic flux density

OR
8. a) State and explain Lorentz's force equation. 5 M
b) Show that the force experienced by the current carrying loop placed in uniform magnetic field is zero.

UNIT-V

9. a) Briefly describe statically induced emf with relevant expressions
b) Express the differential and integral form of (i) Gauss's law for electric field (ii) Gauss's law for magnetic field (iii) Ampere's circuital law and (iv) Faraday's law.

OR

10. a) What is displacement current? Show that displacement current, $\boldsymbol{J}_{\boldsymbol{d}}=\frac{\boldsymbol{Z D}}{\boldsymbol{a} \boldsymbol{t}} \quad 6 \mathrm{M}$
b) State the laws from which Maxwell's I, II, III and IV laws are derived and express Maxwell's equations in free space both in differential and integral form.

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

Electrical Machines-I
 (Electrical and Electronics Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Design and draw a 2 layer progressive duplex winding with Equalizer connections for a 4 -pole dc generator with 16 slots, each slot having 2 coil sides. Indicate the position of brushes.

OR

2. Elucidate the principle of operation and constructional details of a machine, which generates unidirectional voltage with the neat sketch?

14M

UNIT-II

3. a) Derive the Armature ampere-turns, which cause demagnetizing effect and cross magnetizing effect for a DC machine?
b) A 4-pole motor has a wave connected armature with 888 conductors. The brushes are displaced backward through 5 mechanical degrees from the geometric neutral plane. If the total armature current is 90A. Calculate the cross and demagnetized ampere turns per pole.

OR

4. a) Illustrate the process of conversion from $A C$ to $D C$ in dc generators with neat diagrams?
b) Distinguish the methods to avoid sparkings at the brushes in a DC machine?

UNIT-III

5. Sketch the internal and external characteristics of DC machine for the following applications:
a. suitable for consistent power supply
b. Arc welding

OR

6. a) List the reasons for operating dc generators in parallel?
b) Explain the process of building up of voltage in self-excited machine. Under what conditions may it fail to build up the voltage?

9M

UNIT-IV

7. a) Identify the DC motor with the highest starting torque. Assess the reason with relevant equation?
b) A 4 pole, 220 V shunt motor has 540 lap wound conductors. It takes 32 A from the supply mains and develops output power of 5.595 kw . The field winding takes 1 A . The armature resistance is 0.9 and the flux per pole is 30 mWb . Calculate \mathbf{i}) the speed, $\mathbf{i i}$) the torque developed, iii) Shaft torque.

OR
8. Illustrate the different speed control techniques for a shunt motor?

UNIT-V

9. a) Elaborate the test to predetermine the efficiency for a DC machine with relevant equations
b) When running on no load, a 400 V shunt motor takes 5 A . Calculate the efficiency when the motor running on full load and taking a current of 50A. Take armature resistance as 0.5 and field resistance 200

OR

10. a) Explain the direct test of a DC machine in detail with advantages and disadvantages?
b) In a brake test, the dc motor took 42A from a 220 V supply mains. The brake pulley of radius 30 cm had an effective load of 35 kg and the speed was 12 rps . Find the efficiency at the above load.

Code: 4GC32

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

Engineering Mathematics

(Common to EEE \& ECE)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Reduce the following matrix into its normal form and hence find its rank

$$
A=\left[\begin{array}{cccc}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right]
$$

b) Test for consistency and solve

$$
5 x+3 y+7 z=4, \quad 3 x+26 y+2 z=9, \quad 7 x+2 y+10 z=5
$$

2. a) Solve $2 x-y+3 z=9, x+y+z=6, x-y+z=2$ by Gauss elimination method.
b) Verify Caley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and find its inverse.

UNIT-II

3. a) Find a real root of the equation $3 x=\cos x+1$ by Newton-Raphson method correct to four decimal places.
b) Apply Runge-Kutta method to find an approximate value of y for $x=0.2$ in steps of 0.1 if $\frac{d y}{d x}=x+y^{2}$, given that $y=1$, where $x=0$.

OR

4. a) Find a root of the equation $x^{3}-2 x-5=0$, using the Bisection method correct to three decimal places.
b) Find by Taylor's series method the value of y at $x=0.1$ and $x=0.2$ to five decimal places from $\frac{d y}{d x}=x^{2} y-1, \quad y(0)=1$.

UNIT-III

5. a) Estimate the value of $f(22)$ and $f(42)$ from the following table by Newton's forward and backward interpolation formula:

x	20	25	30	35	40	45
$f(x)$	354	332	291	260	231	204

b) Use Simpson's $(1 / 3) r d$ rule and Simpson's(3/8)th rule to estimate $\int_{0}^{6} \frac{d x}{\left(1+x^{2}\right)}$
6. a) Use Lagrange's Interpolation formula to estimate $f(10)$ from the following table:

x	5	6	9	11
$f(x)$	12	13	14	16

b) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.1$ from the following table:

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
y	7.989	8.403	8.781	9.129	9.451	9.750	10.031

UNIT-IV

7. a) Fit a second degree parabola to the following data by the method of least squares:

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

b) Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from

$$
\text { (i) } z=a x+b y+a^{2}+b^{2} \text { and } \quad(i i) z=f(x+a y)+g(x-a y)
$$

OR

8. a) Fit a curve $y=a e^{b x}$ to the following data by the method of least squares:

x	1	2	3	4
y	1.65	2.7	4.5	7.35

b) Solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}$ by variable separable method.

UNIT-V

9. a) Obtain the Fourier series for the function $f(x)=x-x^{2}$ in the interval $[-\pi, \pi]$. Hence show that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots \cdots=\frac{\pi^{2}}{12}$.
b) Find the Fourier sine transform of the function $f(x)=\frac{e^{-a x}}{x}, a>0$.

OR

10. a) Find the half-range Cosine series for the function $f(x)=(x-1)^{2}$ in the interval $(0,1)$. Hence show that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots \cdots=\frac{\pi^{2}}{6}$
b) Show that $e^{-\left(x^{2} / 2\right)}$ is a self-reciprocal with respect to Fourier Transform.

II B.Tech. I Semester Supplementary Examinations November 2017

Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) i. Convert the hexadecimal number 68BE to binary and convert it from binary to octal
ii. Express the number $(26.24)_{8}$ in decimal.
iii. Implement AND Gate using NOR Gates
b) Obtain the
i. 1's and 2's complement of 11011010
ii. 9's and 10's complement of 12345678
iii. State Demorgans theorem for 3 variables

OR

2. a) i. Generate Hamming code for the given 11 bit message 10001110101 and rewrite the entire message with hamming code
ii. Draw the switching circuits for two way staircase
b) i. Convert the following to Decimal.
(A) $(10111111)_{2}$
(B) $(352)_{8}$
ii. Write 3 properties of XOR gate
iii. Distinguish between weighted codes and unweighted codes

UNIT-II

3. a) Simplify the following using Tabular method

$$
F(A, B, C, D, E)=\Sigma(0,2,4,6,9,11,13,15,17,21,25,27,2,31)
$$

b) Reduce the expression $f=A(B+\bar{C}(\overline{A B+A \bar{C}}))$ using Boolean theorems.

OR

4. a) Minimize the function $f=\Sigma m(0,2,4,6,7,8,10,12,13,15)$ using K-Map. Implement using NAND gates.
b) Implement the Boolean expression of EX-OR gate using minimum number of NAND gates.

UNIT-III

5. a) Implement the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\frac{\text { UNIT-III }}{A B+B D+\bar{B} C \bar{D} \text { usinsc }} 18 \times 1$ multiplexer
b) Design a 4-bit Binary to Gray code converter.

OR

6. a) Design a full adder using Half adder. Give internal logic function and Truth Table
b) Implement the following unction using PLA
$A(x, y, z)=\Sigma m(1,2,4,6)$
$B((x, y, z)=\Sigma m(0,1,6,7)$
$C((x, y, z)=\Sigma m(2,6)$

UNIT-IV

7. a) Convert JK-flip flop to D-flip flop.
b) Design a mod-6 synchronous counter using JK-flip flop.

OR

8. a) Design a mod-8 synchronous counter using D flip-flops.
b) Draw the excitation tables of SR, T and D-flip flop.

UNIT-V

9. a) List the capabilities and limitations of finite state machines.
b) Draw and explain ASM chart of a mod-6 counter.

OR

10. a) Draw the state diagram and state table for a sequence detector which can detect a sequence 101.
b) Minimize the following state table using partition method.

Present state	Next state, Output	
	$\mathrm{x}=0$	$\mathrm{x}=1$
a	$\mathrm{b}, 0$	$\mathrm{~d}, 1$
b	$\mathrm{~g}, 0$	$\mathrm{a}, 0$
c	$\mathrm{d}, 0$	$\mathrm{~b}, 1$
d	$\mathrm{g}, 0$	$\mathrm{a}, 0$
e	$\mathrm{d}, 0$	$\mathrm{a}, 1$
f	$\mathrm{e}, 1$	$\mathrm{f}, 1$
g	$\mathrm{d}, 1$	$\mathrm{~d}, 1$
$* * *$		

