		Hall Ticket Number :														
														R-15		
	C	Code: 5G533	or Dogu	lar (. c	امما	2 100 0	n t c	NE / E	(0)100	in ati	المصما	السا			
		II B.Tech. I Semest	_						amid		maii	OHS IN	IOV/L	Jec 2	2017	
								-	eering							
		Max. Marks: 70												ne: 3 H		
		Answer all five units	by choo	osing	g one		estic	on f	rom e	each	ı unit	(5 x	14 = 1	70 Ma	ırks)	
					UI	NIT–I										
1.	a)	Explain clearly the diff	ference b	etwe				and	l a ste	ady f	low p	rocess	3.			5M
	b)	A mass of 2.4 kg of a cylinder device. The a heat is transferred from Calculate the work input.	ir is now m the air	com; such	oress that	sed to	o a fii	nal	oressi	ure of	600	kPa. D	Ouring	the pr	ocess,	
		·	· ·		•		OR									
2.	a)	What is the mechanic and work is expressed	-	lent o	of he	at? V	Vrite	dov	vn its	value	whe	n heat	is ex	presse	d in kJ	5M
	b) A house has an electric heating system that consists of a 300-W fan and an electric resistance heating element placed in a duct. Air flows steadily through the duct at a rate of 0.6 kg/s and experiences a temperature rise of 7°C. The rate of heat loss from the air in the duct is estimated to															
		be 300 W. Determine t	ne power	rauri				, 1 0 8	oistarit	e ne	atirig	elelllel	IL.			9M
3.	a)	A heat pump that is u	used to be	ant a		NIT-I		COI	D of 2	5 T	hat ic	tha h	oat r	numn d	lalivare	
Э.	a)	2.5 kWh of energy to the first law of thermo	the house	e for	each	1 1 k\								•		
	b)	kPa. Initially, three-quarters of the mass is in the liquid phase. An electric resistance heater placed in the tank is now turned on and kept on until all the liquid in the tank is vaporized. Determine the entropy change of the steam during this process.														
1	٥)	Dorivo Clausius - Cla	novron o	auati	on V	N/hat	OR	ovir	nation	oc ord	, invo	dyod in	tha (Clanav	ron	
4.	a)	Derive Clausius – Cla Clausius equation?														6M
	b)	A 200-m ³ rigid tank co		•	enviro	onme	ent co								h work	8M
_	۵۱	Decaribe the present	af fauna at	:		NIT-I		:	:ta aa	مماما م	مدمد ا		-4:	مامم		
5.	a)	Describe the process					_		_	•					Ctoom	5M
	b)	A spherical vessel of 0.9 m ³ capacity contains steam at 8 bar and 0.9 dryness fraction. Steam is blown off until the pressure drops to 4 bar. The valve is then closed and the steam is allowed to cool until the pressure falls to 3 bar. Assuming that the enthalpy of steam in the vessel remains constant during blowing off periods, determine: (i) The mass of steam blown off;														
		(ii) The dryness fraction			the	vesse	el aft	er c	ooling	:						
		(iii) The heat lost by s							J	,						9M
6.	a)	Draw a neat sketch determined; clearly ex		•				d ex	plain	how	dryn	ess fra	action	of ste	eam is	7M
	b)	The following observation series:	itions wei	e tal	ken v	vith a	a sep	arat	ting ar	nd a t	thrott	ling ca	lorime	eter arı	ranged	
		Water separated = 2 k Temperature of steam	•		_					•				kg,		
		Barometer = 760 mm	of Hg, Fi	nal p	ressi	ure =	5 m	m o	f Hg.							
		Estimate the quality of	f steam s	uppli	ed.											7M

UNIT-IV

- 7. a) Determine the value of compressibility factor at critical point (Z_{cp}) for the Van der Waals' gas. 6M
 - b) A vessel of capacity 3m³ contains 1 kg mole of N₂ at 90°C.
 - i. Calculate pressure and the specific volume of the gas.
 - ii. If the ratio of specific heats is 1.4, evaluate the values of c_p and c_v .
 - iii. Subsequently, the gas cools to the atmospheric temperature of 20°C; evaluate the final pressure of gas.
 - iv. Evaluate the increase in specific internal energy, the increase in specific enthalpy, increase in specific entropy and magnitude and sign of heat transfer.

OR

8. a) Calculate the increase in entropy when 3 kg of O₂ at 50°C are mixed with 9 kg of N₂ at the same temperature. The initial pressure of each constituent is 11 bar and is the same as that of the mixture.

7M

8M

- b) The following is the volumetric analysis of a producer gas:
 - CO = 28%, $H_2 = 13\%$, $CH_4 = 4\%$, $CO_2 = 4\%$, $N_2 = 51\%$.

The values of c_p for the constituents CO, H_2 , CH_4 , CO_2 and N_2 are 29.27 kJ/mole-K, 28.89 kJ/mole-K, 35.8 kJ/mole-K, 37.22 kJ/mole-K, and 29.14 kJ/mole-K respectively. Calculate the values of c_p , c_v , c_p and c_v for the mixture.

7M

UNIT-V

9. a) How is the rpm (revolutions per minute) of an actual four-stroke gasoline engine related to the number of thermodynamic cycles? What would your answer be for a two-stroke engine?

5M

- b) The compression ratio of an air-standard Otto cycle is 9.5. Prior to the isentropic compression process, the air is at 100 kPa, 35°C, and 600 cm³. The temperature at the end of the isentropic expansion process is 800 K. Using specific heat values at room temperature, determine:
 - (i) the highest temperature and pressure in the cycle;
 - (ii) the amount of heat transferred in, in kJ;
 - (iii) the thermal efficiency; and
 - (iv) the mean effective pressure.

9M

OR

- 10. Consider a Carnot cycle executed in a closed system with air as the working fluid. The maximum pressure in the cycle is 800 kPa while the maximum temperature is 750 K. If the entropy increase during the isothermal heat rejection process is 0.25 kJ/kg K and the net work output is 100 kJ/kg, determine:
 - i. the minimum pressure in the cycle,
 - ii. the heat rejection from the cycle, and
 - iii. the thermal efficiency of the cycle.
 - iv. If an actual heat engine cycle operates between the same temperature limits and produces 5200 kW of power for an air flow rate of 90 kg/s, determine the second law efficiency of this cycle.

14M

Hall ⁻	Ticke	et Number :															
Code:	5G(C31								J			ı		R	R-15	
II B.Tech. I Semester Regular & Supplementary Examinations Nov/Dec 2017											7						
Engineering Mathematics-III																	
(Common to CE & ME) Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ***********************************											Jrs						
							U	NIT-	I								
1.	a)	Find the ran	k of t	he m	natrix	by r	educ	ing it	to th	ie no	rmal	form	$\begin{bmatrix} 4 \\ 5 \\ 0 \\ 1 \end{bmatrix}$	3 1 1 -1	2 -1 2 3	$\begin{bmatrix} 1 \\ 2 \\ 3 \\ -2 \end{bmatrix}$	7M
b) Find the values of 'a' and 'b' for which the equations																	
		x + y + z = 3	3; x+	2y+	2z =	6;	x + ay	y+3z	= <i>b</i>								
		have (i) No	Solut	ion	(ii) a	Uni	que S	Solut	ion (iii) Ir	nfinite	e nun	nber	of S	Soluti	ions.	7M
OR																	
2.		Find a Matri	хР	whicl	h trai	nsfor	ms t	he m	atrix	<i>A</i> =	$\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$	0 -1 2 1 2 3	to	Diag	jonal	l form.	
		Hence Calculate A^4 . Find the Eigen Values and Eigen Vectors of A. 19 UNIT-II									14M						
3.	a)	Derive a for hence find the	ne cu	ibe ro	oot o	f 15.											10M
	b) Find the parabola passing through points $(0,1)(1,3)$ Raphson Methng Lagrange's interpolation formula.									4M							
								OF	2								
4.		Evaluate $\int_{0}^{1} $	$\sqrt{1+x^2}$	$\frac{1}{3}$ dx	takin	ıg h =	= 0.1	usin	g								
		i) Simpson's			, ,		UI	NIT–I	II	·	,	•					14M
5.		Find $y(0) = 2, z$), y _{ (0)	o.2 = 1	∍ (ii) z(o. by u), 1 z sing	(0.2 Tayl	gi or's s	ven eries	that met	y' hod.	= x	+z,	z' =	= <i>x</i> –	y^2 and	14M
								OF	2								
6.		Apply the forwhen $x = 1.2$				_								ate '	value	es of y	14M

UNIT-IV

7. Find the Fourier series to represent the function $f(x) = x \sin x$, -f < x < f.

Hence deduce that
$$\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{7.9} + \dots = \frac{1}{4} (f - 2)$$

8. a) Form the Partial differential equation by eliminating the arbitrary function from

$$W\left[\frac{y}{x}, x^2 + y^2 + z^2\right] = 0$$

7M

b) Solve by the method of separation of variables $2 x z_x - 3 y z_y = 0$.

7M

UNIT-V

9. a) If f(z) is a regular function of z, prove that

$$\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] |f(z)|^2 = 4|f'(z)|^2$$

7M

b) Find k such that $f(x, y) = x^3 + 3k x y^2$ may be harmonic and find its conjugate.

7M

OR

10. Using Cauchy's integral formula, evaluate $\int_C \frac{z^4}{(z+1)(z-i)^2} dz$ where C

is the ellipse $9x^2 + 4y^2 = 36$.

14M

Hall Ti	cket Number :									D 1	
Code:	5G532									R-1	5
II B.Te	ech. I Semester	_	•	•		•			ons No	v/Dec 2	2017
			urgy &					е			
	Marks: 70 er all five units b	•	lechani ng one	·		Ū	,	unit		Time: 3 F = 70 Mc	
4	Europeia abassi sii			NIT–I							
1.	Explain about dif	terent Bo	nds in So		_						
0	VAII. at the second				R	1					
2.	What is the nece	essity of a	lloying ai	nd expla	in its	adva	antag	jes.			
			LIK	NIT–II							
3	Explain about Ex	neriment			nstru	ction	of e	auilih	rium dia	nrams	
J	Explain about Ex	фонтон	ai illoulo		R	Otioii	0.0	quiiio	mann alaş	granio.	
4.	Explain about Le	ever rule a	nd phas	_							
			UN	IIT–III							
5.	Explain the struc	ture and	oropertie	s of Wh	ite ca	st irc	n.				
				0	R						
6.	Explain the struc	ture and	oropertie	s of cop	per a	and its	s allo	ys.			
			UN	IIT–IV							
7.	Explain about T1	TT diagrar	n.								
					R						
8.	What is the effect	t of alloyi	ng eleme	ents on	ron-l	ron c	arbo	n sys	tem?		
				1							
0	What is some	ocito mot		NT-V	nin o	lifford	ont i	moth	ada of	productio	n of
9.	What is composites.	Joile IIIdi	ciiai ali	iu expli	alli C	anner e	ziit l	HEUI	Jub UI	productio	ii Oi
	•			0	R						
10.	Explain about El	ectric Fur	nace pro	cess wi	th nea	at sk	etch.				

Hall Ticket Number :	Hall licket Number.
----------------------	---------------------

II B.Tech. I Semester Regular & Supplementary Examinations November 2017

Machine Drawing

(Mechanical Engineering)

Max. Marks: 70 Time: 4 Hours

PART-A

Answer any two from the following ($2 \times 10 = 20$ Marks)

- 1. Draw the sectional view from the front and view from the side of a cotter joint with sleeve used to connect two rods of 50mm diameter each.
- 2. Draw sectional front view and top view for double riveted double strap zig-zag butt joint to join plates of thickness 10mm.
- 3. Sketch the following thread profiles for a nominal diameter of 25mm and pitch 3mm.
 - (a) Worm thread (b) Buttress thread (c) ACME thread (d) Whitworth thread

PART-B

Answer any one from the following ($1 \times 25 = 25$ Marks)

4. The following Fig. shows the details of a machine vice. Assemble the parts and draw (*i*) sectional view from the front (*ii*) view from above.

OR

- 5. Assemble all parts of the screw jack as shown in Fig. and draw the following views:
 - (i) Half sectional view from the front (ii) View from above.

PART-C Answer any one from the following ($1 \times 25 = 25$ Marks)

6. Prepare the part drawings of the petrol engine connecting rod

Part No.	Name	Matl.	Qty
1	Rod	FS	1
2	Cap	FS	1
3	Bearing brass	GM	2
4	Bearing bush	P Bronze	1
5	Bolt	MCS	2
6	Nut	MCS	2

7. Prepare the part drawings of the plummer block

Code: 5C534					J.	J	R-15	
Hall Ticket Number :								

II B.Tech. I Semester Regular & Supplementary Examinations Nov/Dec 2017 Manufacturing Technology (Mechanical Engineering) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) UNIT-I Define 'pattern allowance'? Explain various allowances usually considered on 1. a) patterns and core boxes 7M 7M Sketch and explain 'Die casting method' in detail. Explain the factors to be considered in the selection of pattern materials 7M 2. a) 7M Classify special casting processes and explain 'Investment casting' process b) UNIT-II Classify 'welding processes' and explain different types of 'weld joints'. 7M 3. a) Briefly describe the 'Oxy-Acetylene welding' technique with a neat sketch b) 7M Sketch and explain 'plasma arc welding process'. Give its advantages and 4. a) applications in detail 7M 7M b) Describe the possible causes for 'weld defects'. UNIT-III 5. Briefly explain the 'metal working processes' in detail. Give their applications 7M a) Explain the process of 'coining' in detail with the help of a sketch. 7M b) OR Sketch and explain 'wire drawing' and 'Tube drawing' processes in detail. 6. Give their applications and advantages 7M Explain in brief the defects in 'rolled products'. 7M b) **UNIT-IV** Classify 'extrusion processes'? With a neat sketch explain 'Hydrostatic 7. a) extrusion' process 7M Differentiate between 'Forward extrusion' and 'Backward extrusion' 7M OR List and describe various types of 'dies' 7M 8. a) 7M Explain with neat sketches the process of 'smith forging' and 'drop forging' **UNIT-V** a) Give a broad classification of 'plastic materials'. State their properties and applications. 7M Explain in brief the method of preparing 'plastic materials'. 7M OR a) Describe the process of 'Injection moulding' with a neat sketch. 7M 10. b) Explain in brief about 'Compression moulding'. 7M

	На	Il Ticket Number :	
(Cod	e: 5G531	
	II B	Tech. I Semester Regular & Supplementary Examinations Nov/Dec 2017.	
		Mechanics of Solids	
	١ ٨ ٨ ٥	(Mechanical Engineering)	
		Answer all five units by choosing one question from each unit ($5 \times 14 = 70 \text{ Marks}$) *********	
		UNIT-I	
1.	a)	Prove that the maximum stress induced in a body due to suddenly applied load is twice the stress induced when the same load is applied gradually.	7M
	b)	A steel bar is placed between two copper bars, each having the same area and length as steel bar at 20° C. At this stage, they are rigidly connected together at both the ends. When the temperature is raised to 320° C, the length of the bars increased by 1.5 mm. Determine the original length and final stresses in the bars. Take $E_S=220$ GN/m²; $E_C=110$ GN/	7M
		OR	
2.	a)	Find an expression for the total elongation of a bar due to its own weight, when the bar is fixed at its upper end and hanging freely at its lower end.	7M
	b)	An axial pull of 40000N is acting on a bar consisting of three sections of length 30cm,25 cm and 25 cm and diameters 2 cm,4 cm and 5 cm respectively. If the Young's modulus=2×10 ⁵ N/mm ² , determine:	
		(i) Stress in each section (ii) total extension in the bar.	7M
		UNIT-II	
3.	a)	What do you mean by point of contra flexure? Is the point of contra flexure and point of inflexion different?	7M
	b)	A cantilever 2 m long is loaded with a uniformly distributed load of 2 kN/m run over a length of 1 m from the free end. It also carries a point load of 4 KN at a distance of 0.5 m from the free end. Draw the shear force and M.M. diagrams.	7M
		OR	
4.		A simply supported beam of length 5 m, carries a uniformly distributed load of 100 N/m extending from the left end to a point 2 m away. There is also a clock wise couple of 1500 Nm applied at the centre of the beam. Draw the SF and B.M. diagrams for the	14M
		beam and find the maximum bending moment.	14111
_	۵)	What do you man by acation modulus? Find an expression for acation modulus for	
5.	,	What do you mean by section modulus? Find an expression for section modulus for rectangular, circular and hollow circular sections.	7M
	b)	A steel pipe of width 60 mm and of thickness 10 mm is bent into a circular arc of radius 10 m. Determine the maximum stress induced and the bending moment which will produce the maximum stress. Take $E=2\times10^5$ N/mm ² .	7M
		OR	
6.	a)	State the assumptions made in the theory of simple bending and derive the bending equations	7M
	b)	A circular beam of 105 mm diameter is subjected to a shear force of 5 KN. Calculate average shear stress. maximum shear stress. Also sketch the variation of shear stress along the depth of beam.	7M

UNIT-IV

7. a) Derive an expression for the slope and deflection of a cantilever of length L, carrying a point load W at the free end by double integration method.

7M

- b) A beam AB of 4 meters span is simply supported at the ends and is loaded as shown in the figure. Determine:
 - (i) Deflection at C
 - (ii) Maximum deflection
 - (iii) Slope at the end A
 - (iv) $E=200\times10^6$ kN/m² and $I=20\times10^{-6}$ m⁴. Use Macaulay's method

7M

8. a) Prove tnat he strain energy stored in a body due to shear stress is given by

$$U = \frac{\tau^2}{2C} \times V$$

Where τ = shear stress

C=Modulus of rigidity

V= volume of the body

7M

- b) A steel girder of 6 m length acting as a beam carries a uniformly distributed load w N/m run throughout its length. If I=30×10⁻⁶ m⁴ and depth 270 mm, calculate:
 - The magnitude of w so that the maximum stress developed in the beam section does no exceed 72 MN/m²
 - (ii) The slope and deflection (under this load) in the beam at a distance of 1.8 m from one end.

7M

9. a) Define slenderness ratio. State the limitations of Euler's formula.

7M

b) Determine the crippling load for a T- section of dimensions 10cm×10cm×2cm and of length 5m when t is used as strut with both of its ends hinged. Take Young's modulus E=2.0×10⁵ N/mm².

7M

OR

10. a) What do you mean by Lame's equation? How will you derive these equations?

7M

b) Determine the ratio of buckling strengths of two columns one hollow and the other solid. Both are made of the same material and have the same length, cross sectional area and end conditions. The internal diameter of hollow column is 2/3rd of its external diameter.

7M