		Hall Ticket Number :											[]	
	(Code: 4G533											R-14	
		II B.Tech. I Se	mester	Sup	pler	ner	ntary	/ Exc	amir	natio	ons I	Nov/D	ec 2017	
				Basi	-		-							
				(Me	cho	nico	al En	gine	erin	g)				
		Max. Marks: 70	by cho	osino			Inctiv	on fr	om		hun	i+ / 5 v 1	Time: 3 Hours $4 - 70$ Marks	
		Answer all five units	by cho	Using	ј ОП		****		OIII	euc	11 011		14 - 70 Marks j	
					U	NIT-I								
1.	a)	Explain clearly the diff	erence b	betwe	en a	non	-flow	and	a ste	eady	flow	process	i.	5M
	b)	A mass of 2.4 kg of a cylinder device. The a heat is transferred from Calculate the work inp	ir is now m the air	com such	oress that	sed to the	o a fi temp	nal p	ress	ure c	of 600) kPa. D	uring the process,	9M
2.	2)	What is the mechanic			ofho	0t2 V		dow	n ite	volu	o wh	on hoot	is overessed in k l	
Ζ.	a)	and work is expressed	d in N-m											5M
	b)	A house has an electr heating element place experiences a tempera be 300 W. Determine t	d in a d ture rise	uct. A of 7°(ir flo C. Th	ws s e rat	teadi e of h	ily th neat l	rougl oss f	h the	duc the ai	t at a ra	te of 0.6 kg/s and duct is estimated to	014
						NIT-								9M
3.	a)	A heat pump that is u 2.5 kWh of energy to the first law of thermo	the hous	e for	hou each	se ha n 1 k ^v	as a							5M
	b)	A well-insulated rigid kPa. Initially, three-qu placed in the tank is Determine the entropy	arters o now turr	f the ned o	mas n an	s is i d ke	in the pt or durin	e liqu n unt	iid p il all	hase the l	. An liquid	electric	resistance heater	9M
4		Derive Clausius Cla				N/h a t	OR					al va al iva	the Cleney were	
4.	a)	Derive Clausius – Cla Clausius equation?	peyione	quali	011. v	viiai	appi	IUXIII	allo	15 מו	einv			6M
	b)	A 200-m ³ rigid tank co can be obtained from		•										8M
					U	IT-I	II							
5.	a)	Describe the process	of forma	tion o	f ste	am a	and g	jive it	s gra	aphic	al re	presenta	ation also.	5M
	b)	A spherical vessel of (is blown off until the pr to cool until the press remains constant durin (i) The mass of steam	ressure o sure falls ng blowi	drops s to 3 ng off	to 4 bar	bar. . As	The sumi	valve ng th	e is th nat th	nen c	losed	d and the	e steam is allowed	
		(ii) The dryness fraction	on of stea	am in	the	vess	el aft	er co	oling) ;				
		(iii) The heat lost by st	eam pei	ˈkg d	uring	000	ling.							9M
							OR							
6.	a)	Draw a neat sketch or determined; clearly ex		•			r and	d ex	plain	how	/ dry	ness fra	action of steam is	7M
	b)	The following observa in series :	tions we	re tal	ken v	vith a	a sep	oarati	ng a	nd a	throt	tling cal	orimeter arranged	
		Water separated = 2 k	kg, Stear	n diso	charg	jed f	rom t	the th	nrottl	ing c	alorir	neter =	20.5 kg,	
		Temperature of steam	after th	rottlin	g = 1	10°0	C, Ini	tial p	ress	ure =	= 12 k	bar abs.	,	
		Barometer = 760 mm	of Hg, F	inal p	ressi	ure =	5 m	m of	Hg.					
		Estimate the quality of	f steam s	suppli	ed.									7M
													Page 1 of 2	

UNIT-IV

- 7. a) Determine the value of compressibility factor at critical point (Z_{cp}) for the Van der Waals' gas. 6M b) A vessel of capacity $3m^3$ contains 1 kg mole of N₂ at 90°C. i. Calculate pressure and the specific volume of the gas. ii. If the ratio of specific heats is 1.4, evaluate the values of c_p and c_v . iii. Subsequently, the gas cools to the atmospheric temperature of 20°C; evaluate the final pressure of gas. iv. Evaluate the increase in specific internal energy, the increase in specific enthalpy, increase in specific entropy and magnitude and sign of heat transfer. 8M OR 8. a) Calculate the increase in entropy when 3 kg of O_2 at 50°C are mixed with 9 kg of N_2 at the same temperature. The initial pressure of each constituent is 11 bar and is the same as that of the mixture. 7M b) The following is the volumetric analysis of a producer gas: CO = 28%, $H_2 = 13\%$, $CH_4 = 4\%$, $CO_2 = 4\%$, $N_2 = 51\%$. The values of c_p for the constituents CO, H₂, CH₄, CO₂ and N₂ are 29.27 kJ/mole-K, 28.89 kJ/mole-K, 35.8 kJ/mole-K, 37.22 kJ/mole-K, and 29.14 kJ/mole-K respectively. Calculate the values of c_p , c_v , c_p and c_v for the mixture. 7M UNIT-V How is the rpm (revolutions per minute) of an actual four-stroke gasoline engine related to the 9. a) number of thermodynamic cycles? What would your answer be for a two-stroke engine? 5M b) The compression ratio of an air-standard Otto cycle is 9.5. Prior to the isentropic compression process, the air is at 100 kPa, 35°C, and 600 cm³. The temperature at the end of the isentropic expansion process is 800 K. Using specific heat values at room temperature, determine: (*i*) the highest temperature and pressure in the cycle; (*ii*) the amount of heat transferred in, in kJ; (iii) the thermal efficiency; and (iv) the mean effective pressure. 9M
 - OR
- 10. Consider a Carnot cycle executed in a closed system with air as the working fluid. The maximum pressure in the cycle is 800 kPa while the maximum temperature is 750 K. If the entropy increase during the isothermal heat rejection process is 0.25 kJ/kg - K and the net work output is 100 kJ/kg, determine:
 - i. the minimum pressure in the cycle,
 - ii. the heat rejection from the cycle, and
 - iii. the thermal efficiency of the cycle.
 - iv. If an actual heat engine cycle operates between the same temperature limits and produces 5200 kW of power for an air flow rate of 90 kg/s, determine the second law efficiency of this cycle.

14M

	Hall	Ticket Number :	٦
L	Cod	e: 4G236	
		II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017	
		Electrical Engineering and Electronics Engineering	
		(Common to ME, CSE & IT) x. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	

1.	a)	UNIT–I Explain about different types of electrical elements?	7M
••	b)	Deduce the equivalent resistance when R_1, R_2 and R_3 are connected in parallel.	7M
	0)	OR	7 101
2.		Derive the necessary equations for converting star to delta and Delta to star	14M
		UNIT–II	
3.	a)	With a neat sketch explain the constructional details and principle of operation of DC generator	10M
	b)	Write the applications of DC generators	4M
		OR	
4.	a)	Explain the working principle of DC motor with a neat diagram	7M
	b)	Derive the expression for torque of DC motor	7M
_	-)	UNIT-III	
5.	a)	How the efficiency of single phase transformer can be find out from the OC and SC tests.	14M
		OR	
6.	a)		7M
	b)	Describe the procedure required to find out the efficiency of three phase induction motor by using a brake test.	7M
7.	a)	UNIT-IV What is a PN junction diode and explain the V-I characteristics of PN junction diode	7M
1.	,		7 101
	b)	What is rectifier and explain the operation of single phase half wave diode rectifier with a neat output waveforms	7M
		OR	
8.	a)	Draw and explain the input and output characteristics of CE amplifier	7M
	b)	How transistor can be acts as an amplifier	7M
		UNIT–V	
9.	a)	Explain about induction and dielectric heating and mention its industrial applications	14M
10		OR Draw the block diagram of CRO and evaluin	714
10.	,	Draw the block diagram of CRO and explain	7M
	b)	Explain any two applications of CRO	7M

Hall Ti	cket Number :													
Code:	4G532								J		J	J	R	-14
	ll B.Tech. I Se	mest	ter S	Supi	olen	nen	tary	Exa	min	atio	ns N	lov/De	ec 201	7
		Ν				& M					е			
	Marks: 70 er all five units	by c	·			nical					uni	+ (5 v 1		3 Hours
7113446		byc	100	Jung	One	***	***	II IIC	JIII C	uci	UIII		4 - 701	Marks J
						INIT-								
1.	Explain about of	differe	ent E	Sond	s in S	Solids								
2.	What is the pa	oocci	hy of	مالم	ina (and a			odvr	ntor	100			
۷.	What is the ne	CESSI	ty OI	alloy	ning a	anu e	spia	11115	auva	annag	Jes.			
					U	NIT-	11							
3.	Explain about I	Exper	rime	ntal r				nstru	ction	of e	quilib	orium dia	agrams.	
							Ο	R						
4.	Explain about I	_ever	[.] rule	and	pha	se ru	le.							
F	Evalois the stu	1		ما بم برم		NIT–		40.00						
5.	Explain the stru	JCIUIE	e an	a pro	peru	es oi	VVIII O		SUIC	m.				
6.	Explain the stru	ucture	an an	d pro	perti	es of	-		nd it	s allo	ovs			
0.		aotart		a pro	porti	00 01	oop	001 0		o anc	<i>,</i> y 0.			
					U	NIT-I	V							
7.	Explain about	TTT c	diagr	am.										
							0	R						
8.	What is the effe	ect of	allo	ying	elem	nents	on l	ron-l	ron c	arbo	n sys	stem?		
					—									
9.	What is com composites.	posite	e m	ateri		NIT– nd e		in d	liffere	ent i	meth	ods of	produc	ction of
							Ο	R						
10.	Explain about I	Electr	ric F	urna	ce pr		s wit **	h nea	at sk	etch.				

Hall	Tick	et Number :	
Code:	4G	C31 R-14	
couc.		.Tech. I Semester Supplementary Examinations Nov/Dec 2017 Mathematics-II	
		(Common to CE & ME)	
		rks: 70 Time: 3 Hou r	irs
A	IISWE	er all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********	
		UNIT–I	
1.	a)	Find the rank of the matrix by reducing it to the normal form $\begin{bmatrix} 4 & 3 & 2 & 1 \\ 5 & 1 & -1 & 2 \\ 0 & 1 & 2 & 3 \\ 1 & -1 & 3 & -2 \end{bmatrix}$	7M
	b)	Find the values of 'a' and 'b' for which the equations	
		x + y + z = 3; x + 2y + 2z = 6; x + ay + 3z = b	
		have (i) No Solution (ii) a Unique Solution (iii) Infinite number of Solutions.	7M
		OR	
2.		Find a Matrix P which transforms the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ to Diagonal form.	
		Hence Calculate A^4 . Find the Eigen Values and Eigen Vectors of A. UNIT-II	14M
3.	a)	Derive a formula to find the cube root of N using Newton- Raphson Method hence find the cube root of 15.	10M
	b)	Find the parabola passing through points $(0,1)(1,3)$ and $(3,55)$ usi	4M
		OR	
4.		Evaluate $\int_{0}^{1} \sqrt{1+x^3} dx$ taking h = 0.1 using	
		i) Simpson's 1/3 rd rule (ii) Simpson's 3/8 th rule (iii) Trapezoidal rule.	14M
5.		Find $y(0) = z, z(0) = 1$ by using Taylor's series method.	14M
		OR	
6.		Apply the fourth order Runge-Kutta method, to find an approximate values of y	
		when $x = 10$ is store of 0.1 since that $1 = \frac{2}{2} + \frac{2}{2} = \frac{2}{2} = \frac{1}{2}$	

when x= 1.2, in steps of 0.1, given that $y' = x^2 + y^2$, y(1) = 1.5 14M

Code: 4GC31

7. Find the Fourier series to represent the function $f(x) = x \sin x$, -f < x < f. Hence deduce that $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{7.9} + \dots = \frac{1}{4}(f - 2)$ OR

8. a) Form the Partial differential equation by eliminating the arbitrary function from $W \begin{bmatrix} \frac{y}{2} & x^2 + y^2 + z^2 \end{bmatrix} = 0$

$$W\left[\frac{y}{x}, x^2 + y^2 + z^2\right] = 0$$
7M

b) Solve by the method of separation of variables $2 x z_x - 3 y z_y = 0$. 7M

UNIT-V

9. a) If f(z) is a regular function of z, prove that
$$\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] |f(z)|^2 = 4|f'(z)|^2$$
7M

b) Find k such that $f(x, y) = x^3 + 3k x y^2$ may be harmonic and find its conjugate. 7M

OR

10. Using Cauchy's integral formula, evaluate $\int_C \frac{z^4}{(z+1)(z-i)^2} dz$ where C is the ellipse $9x^2 + 4y^2 = 36$. 14M

Hall Ticket Number :							
Hall ficket number:							

Code: 4G531

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

Mechanics of Solids

(Mechanical Engineering)

Max. Marks: 70

Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT-I

- 1. a) Prove that the maximum stress induced in a body due to suddenly applied load is twice the stress induced when the same load is applied gradually.
 - b) A steel bar is placed between two copper bars, each having the same area and length as steel bar at 20°C. At this stage, they are rigidly connected together at both the ends. When the temperature is raised to 320°C, the length of the bars increased by 1.5 mm. Determine the original length and final stresses in the bars. Take E_S=220GN/m²;E_C=110 GN/m²; s=0.000012 per⁰C; c=0.0000175 per⁰C.

OR

- 2. a) Find an expression for the total elongation of a bar due to its own weight, when the bar is fixed at its upper end and hanging freely at its lower end.
 - b) An axial pull of 40000N is acting on a bar consisting of three sections of length 30cm,25 cm and 25 cm and diameters 2 cm,4 cm and 5 cm respectively. If the Young's modulus= 2×10^5 N/mm², determine:
 - Stress in each section (ii) total extension in the bar. (i)

UNIT-II

- 3. a) What do you mean by point of contra flexure? Is the point of contra flexure and point of inflexion different?
 - b) A cantilever 2 m long is loaded with a uniformly distributed load of 2 kN/m run over a length of 1 m from the free end. It also carries a point load of 4 KN at a distance of 0.5 m from the free end. Draw the shear force and M.M. diagrams. 7M

OR

4. A simply supported beam of length 5 m, carries a uniformly distributed load of 100 N/m extending from the left end to a point 2 m away. There is also a clock wise couple of 1500 Nm applied at the centre of the beam. Draw the SF and B.M. diagrams for the beam and find the maximum bending moment.

UNIT-III

- 5. a) What do you mean by section modulus? Find an expression for section modulus for rectangular, circular and hollow circular sections.
 - b) A steel pipe of width 60 mm and of thickness 10 mm is bent into a circular arc of radius 10 m. Determine the maximum stress induced and the bending moment which will produce the maximum stress. Take E=2×10⁵ N/mm².

OR

- 6. a) State the assumptions made in the theory of simple bending and derive the bending equations
 - b) A circular beam of 105 mm diameter is subjected to a shear force of 5 KN. Calculate average shear stress. maximum shear stress. Also sketch the variation of shear stress along the depth of beam.

7M

7M

7M

7M

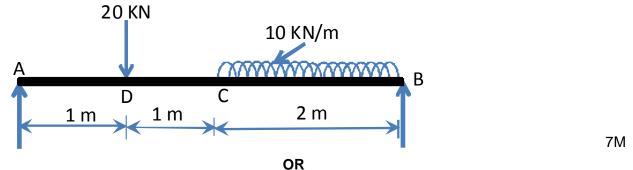
7M

7M

14M

7M

7M


7M

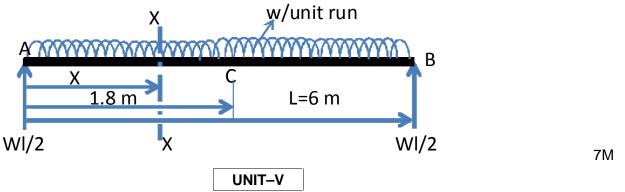
7M

7. a) Derive an expression for the slope and deflection of a cantilever of length L, carrying a point load W at the free end by double integration method.

UNIT-IV

- b) A beam AB of 4 meters span is simply supported at the ends and is loaded as shown in the figure. Determine:
 - (i) Deflection at C
 - (ii) Maximum deflection
 - (iii) Slope at the end A
 - (iv) $E=200\times10^6$ kN/m² and $I=20\times10^{-6}$ m⁴. Use Macaulay's method

8. a) Prove that the strain energy stored in a body due to shear stress is given by $\int_{1}^{1} \frac{\tau^2}{2\pi M} dt$


$$U = \frac{l}{2C} \times V$$

Where τ = shear stress

C=Modulus of rigidity

V= volume of the body

- b) A steel girder of 6 m length acting as a beam carries a uniformly distributed load w N/m run throughout its length. If I=30×10⁻⁶ m⁴ and depth 270 mm, calculate:
 - The magnitude of w so that the maximum stress developed in the beam section does no exceed 72 MN/m²
 - (ii) The slope and deflection (under this load) in the beam at a distance of 1.8 m from one end.

- 9. a) Define slenderness ratio. State the limitations of Euler's formula.
 - b) Determine the crippling load for a T- section of dimensions 10cm×10cm×2cm and of length 5 m when t is used as strut with both of its ends hinged. Take Young's modulus E=2.0×10⁵ N/mm².

OR

- 10. a) What do you mean by Lame's equation? How will you derive these equations?
 - b) Determine the ratio of buckling strengths of two columns one hollow and the other solid. Both are made of the same material and have the same length, cross sectional area and end conditions. The internal diameter of hollow column is 2/3rd of its external diameter.
 7M

7M

7M

7M

7M